
  

Solving elliptic PDEs

∇ 2u ( r⃗ )=− f ( r⃗ )Mostly consider the Poisson equation

Solve it in some region of space Ω. On the boundaries Γ, boundary conditions:

u( r⃗ )∣Γ=g ( r⃗ ) (Dirichlet)

or

n⃗⋅∇ u( r⃗ )∣Γ≡
∂u( r⃗ )
∂n ∣

Γ
=g ( r⃗ ) (Neumann)

Can be a mixture: Dirichlet on some part and Neumann on the rest.
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∇ 2u ( r⃗ )=− f ( r⃗ )

u( r⃗ )∣Γ=g ( r⃗ ) (Dirichlet) or n⃗⋅∇ u( r⃗ )∣Γ=g ( r⃗ ) (Neumann)

Boundaries can be grounded conductors (φ = 0) or their potential can be 

specified (φ = φ0), e.g., capacitor plates – Dirichlet conditions. We can also 

consider infinite space, where φ = 0 at ∞, but for numerical methods we 

usually need to make it finite. Then either put φ = 0 on the boundaries or 

estimate φ where you put the boundaries and fix φ at that value.

E.g., electrostatics:

∇ 2ϕ( r⃗ )=−4πρ( r⃗ )
ϵ  (CGS)     or     ∇ 2ϕ( r⃗ )=−ρ( r⃗ )

ϵ0 ϵ
 (SI)

Here assume ϵ=const

Or can have dielectric boundaries with the charge density σ specified, which 
in the simplest case (e.g., symmetric problem) can give Neumann BC:

ϵ1
∂ϕ( r⃗ )
∂n ∣

1
−ϵ2

∂ϕ( r⃗ )
∂n ∣

2
=−4πσ( r⃗ )⇒ ∂ϕ( r⃗ )

∂n
=−2πσ

ϵ for a symm. pr.
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Heat equation:
∂T ( r⃗ , t)

∂ t =α∇ 2T ( r⃗ , t)+ f ( r⃗ ) T ( r⃗ , t ) is the temperature

f ( r⃗ ) describes a heat source

c ( r⃗ )∣Γ=0
– reflecting BC

T ( r⃗ )∣Γ=T 0( r⃗ ) – temperature specified at the boundary

Stationary solution:

α=k /(c pρ)

∂T ( r⃗ , t)
∂ t

=0 ⇒ ∇ 2T ( r⃗ )=− f ( r⃗ )
α

∂T ( r⃗ )
∂n ∣

Ω
=0 – insulating boundary

∂T ( r⃗ )
∂n ∣

Γ
=J ( r⃗ ) – heat flow

Diffusion equation:
∂ c( r⃗ , t)

∂ t
=D∇ 2c ( r⃗ , t )+ f ( r⃗ ) c ( r⃗ , t) is the particle concentration

∂c ( r⃗ )
∂ n ∣

Γ
=0

∂T ( r⃗ )
∂n ∣

Γ
=0

– absorbing BC

∇ 2c ( r⃗ )=− f ( r⃗ )
D
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∇ 2u ( r⃗ )=− f ( r⃗ )

Finite difference method

Recall 1D: y (a)=C1 ; y (b)=C 2

Approximate the derivatives by finite differences:

Introduce a mesh {xn}, where x0=a, xM=b, xn=a+hn.

yn= y (xn); gn=g ( xn); k n=k ( xn); sn=s( xn)

y ' ' n=
yn+1−2 yn+ yn−1

h2 +O(h2); y ' n=
yn+1− yn−1

2h +O(h2)

yn+1−2 yn+ yn−1

h2 +gn
yn+1− yn−1

2h
+k n yn−sn+O(h

2)=0, n=1,. .. ,M−1

Boundary conditions:
y0=C1 yM=C2

A system of M+1 linear equations, M+1 unknowns. Tridiagonal. The error is 

of the same order as the discretization error, i.e., O(h2).

y ' '+g ( x) y '+k ( x) y=s( x)
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Straightforward to generalize to higher dimensions. Consider 2D.

−(∂2u (x , y)
∂ x2 +∂2u (x , y)

∂ y2 )= f (x , y)

Ω

Γ

Lx

Ly

y

x

u∣Γ=0

Introduce a rectangular grid Δ x=
Lx
M(M+1)×(N+1) Δ y=

L y
N

. . .

0 1 2 M-2 M-1 M
0
1
2

N-2
N-1
N
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−(∂2u (x , y)
∂ x2 +∂2u (x , y)

∂ y2 )= f (x , y) u∣Γ=0

x i=iΔ x y j= jΔ y u (xi , y j)≡uij f (xi , y j)= f ij

∂2u(x , y)
∂ x2 ∣

(xi , y j)
≈
ui+1, j−2ui , j+ui−1, j

Δ x2
∂2u( x , y)

∂ y2 ∣
(xi , y j)

≈
ui , j+1−2ui , j+ui , j−1

Δ y2

−
ui+1, j−2ui , j+ui−1, j

Δ x2 −
ui , j+1−2ui , j+ui , j−1

Δ y2 ≈ f ij

i

. . . . . .

. . . . . .
j

5-point stencil

i,j i+1,ji-1,j

i,j+1

i,j-1

u0 j=uM , j=ui 0=ui , N=0
i=1,. .. , M−1; j=1,. .. , N−1
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−
ui+1, j−2ui , j+ui−1, j

Δ x2 −
ui , j+1−2ui , j+ui , j−1

Δ y2 = f ij

u0 j=uM , j=ui 0=ui , N=0
i=1,. .. , M−1; j=1,. .. , N−1

A system of linear equations. (M-1)x(N-1) equations, as many unknowns.

Δ x=Δ y=h

M=N=4

0 1 2 3 4
0

1

2

3

4

1 2 3

4 5 6

7 8 9For node 1:
1
h2 (−u21+2u11−u01−u12+2u11−u10)

= 1
h2 (−u2+4 u1−u4)= f 1

For node 4:
1
h2 (−u1−u5−u7+4u4)= f 4

For node 5:
1
h2 (−u2−u4−u6−u8+4 u5)= f 5
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A= 1
h2(

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

)
Block-tridiagonal matrix. Block size is M-1.

Can also be viewed as a band-diagonal matrix. Band width is 2M-1.

v⃗T A v⃗=∑i=1
M−1∑ j=1

N−1aij vi v j=∑i=1
M−1∑ j=1

N−1[ 1
Δ x2 (vij−vi−1, j)

2+ 1
Δ y2 (v ij−vi , j−1)

2]>0

Symmetric positive definite.
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A u⃗= f⃗

How do we solve the system? Direct methods: Gauss elimination, Cholesky 

decomposition. For a general matrix, the computational cost would be ~size3 ~ 

(M2)3 = M6. Fortunately, we have a banded matrix, in which case many matrix 

elements are 0 and remain 0 even during elimination, so the cost is reduced 

to ~ size×(bandwidth)2 ~ M4. For a rectangular grid, make sure M<N.

For M×M grid, the matrix size is ~M2.

It may be possible to find better ordering of sites to decrease the amount of 

“fill” in Gaussian elimination. Diagonal numbering (see next slide), nested 

dissection. The latter can reduce the cost to ~ M3, which makes it a viable 

(and more accurate) alternative to iterative methods that I will consider next.

In 3D, however, the matrix size is ~M3, the band width is ~M2, so 

straightforward direct methods give ~M7 and special sparse methods only get 

this down to ~M6, which is extremely costly.
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Diagonal numbering

J.R. Hauser, Numerical Methods for Nonlinear Engineering Models, Springer, Dordrecht, 2009
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A x⃗=b⃗ :

−
ui+1, j−2ui , j+ui−1, j

Δ x2 −
ui , j+1−2ui , j+ui , j−1

Δ y2 = f ij

Δ x=Δ y=h
4u i , j−ui+1, j−ui−1, j−ui , j+1−ui , j−1

h2 = f ij

Jacobi: x i
(k+1)=− 1

aii
∑ j≠i

a ij x j
(k )+ 1

a ii
bi

ui , j
(k+1)=1

4 (ui+1, j
(k) +ui−1, j

(k ) +ui , j+1
(k ) +ui , j−1

(k) )+h
2

4 f ij

(not very useful, but easy to 
analyze)

At first it seems this should grow indefinitely, but keep in mind the boundary 

nodes are kept equal to 0. Extension to 1D and 3D is very natural.

A hand-waving argument: this is a discretization of the diffusion equation, or 

a master equation for particles doing random walks one step per iteration. 

For M×M grid, takes ~M2 steps to travel end to end – ~M2 iterations to reach 

equilibrium. Each iteration has cost ~M2, so total cost ~M4.
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4u i , j−ui+1, j−ui−1, j−ui , j+1−ui , j−1

h2 = f ij

Gauss-Seidel: x i
(k+1)= 1

aii (−∑ j<i
aij x j

(k+1)−∑ j>i
aij x j

(k ))+ 1
aii
bi

Depends on the ordering of the sites. If we use the same ordering as before:

ui , j
(k+1)=1

4
(ui+1, j

(k ) +ui−1, j
(k+1)+ui , j+1

(k ) +ui , j−1
(k+1) )+ h

2

4
f ij

Another popular choice: red-black Gauss-Seidel: update all red sites first, 

then all black sites. First for red:

ui , j
(k+1)=1

4 (ui+1, j
(k) +ui−1, j

(k ) +ui , j+1
(k ) +ui , j−1

(k) )+h
2

4 f ij

Then for black:

ui , j
(k+1)=1

4
(ui+1, j

(k+1)+ui−1, j
(k+1)+ui , j+1

(k+1)+ui , j−1
(k+1) )+h

2

4
f ij

Based on the same diffusion argument, it is 
obvious it should be twice as fast as Jacobi
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4u i , j−ui+1, j−ui−1, j−ui , j+1−ui , j−1

h2 = f ij

Successive over-relaxation (SOR):
x i
(k+1)=(1−ω) xi

(k )+ ω
a ii (−∑ j<i

aij x j
(k+1)−∑ j>i

aij x j
(k )+bi)

For red:
ui , j
(k+1)=(1−ω)ui , j

(k )+ω
4
(ui+1, j

(k ) +ui−1, j
(k ) +ui , j+1

(k ) +ui , j−1
(k ) +h2 f ij)

Then for black:

ui , j
(k+1)=(1−ω)ui , j

(k )+ω
4
(ui+1, j

(k+1)+ui−1, j
(k+1)+ui , j+1

(k+1)+ui , j−1
(k+1)+h2 f ij)

Optimal ω can be obtained from the spectral radius of the Jacobi iteration λJ

ωopt=
2

1+√1−λ J
2

. In our case, λJ=
cos(π/M )+β2 cos(π/N )

1+β2 ;  β=Δ x /Δ y

There are ways to estimate ω when it is not known analytically.

Symmetric SOR (switch red ↔ black) supposedly leads to an improvement.
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  Conjugate gradient method can be used, but preconditioning is desirable.

Line SOR: solve the system for a line of sites directly using the values for 
adjacent lines from the previous iteration or from the current iteration where 
available. Over-relax.

A= 1
h2(

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

)
Alternating between lines and columns, gives alternating direction implicit 

method. Optimal method includes cycling between different values of ω.

Speeds up convergence by a factor √2 .
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Multigrid approach

In many iterative methods, high-frequency components relax faster than low-

frequency components. Such methods are called smoothers. Not true for 

Jacobi, true for sufficiently underrelaxed Jacobi, Gauss-Seidel, SOR. Coarser 

discretizations also relax faster.

Idea: alternate relaxations on coarse grids that would relax large features 

rapidly and relaxations on fine grids that would relax high-frequency features 

rapidly.

Need procedures that transfer from fine to coarse grid (restriction) and vice 

versa (prolongation). Restriction usually done by just taking the value at the 

coarse grid points or some weighted average. Prolongation can be done by 

linear interpolation.
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Full multigrid:

Each “V-cycle” can be repeated several times. Achieves linear cost in the 
number of grid points [i.e., O(M2) in 2D].
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Variations of the problem

Neumann boundary condition

Just as in 1D, introduce a “ghost” site behind the boundary.

0,j+1

0,j 1,j-1,j

0,j-1

−
u1, j−2u0, j+u−1, j

Δ x2 −
u0, j+1−2u0, j+u0, j−1

Δ y2 = f 0, j

u1, j−u−1, j

2Δ x =g0, j ⇒ u−1, j=u1, j−2 g0, jΔ x

−2
u1, j−u0, j−g0, jΔ x

Δ x2 −
u0, j+1−2 u0, j+u0, j−1

Δ y2 = f 0, j

∂u ( r⃗ )
∂n ∣

Γ
=g ( r⃗ )

Periodic boundary conditions

uM , j=u0, j  etc.
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Other terms in the equation

∂u
∂ x∣(xi , y j)≈

ui+1, j−u i−1, j

2Δ x

But, similar to our discussion for ODEs, D∇2u−v ∂u
∂ x

=0

D
ui+1, j+ui−1, j+ui , j+1+ui , j−1−4ui , j

h2 −v
ui+1, j−u i−1, j

2h
=0

Pe= vh
2D

.Péclet number If Pe>1, may no longer be positive definite.

Then use
ui , j−ui−1, j

Δ x .

D∇2u−v⃗⋅∇ u−Cu=− f

u (xi , x j)→ui , j

Eigenvalue problem
−∇ 2u=λ u

−
ui+1, j−2ui , j+ui−1, j

Δ x2 −
ui , j+1−2ui , j+ui , j−1

Δ y2 =λ uij
Algebraic 
eigenvalue problem
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Non-rectangular domains

Straightforward, if the boundaries are still along the grid lines (although there 

may be issues with corners).

If that is not the case, finite volume and especially finite element may be better 

approaches. But finite differences can still handle it.

Crudest: approximate the boundary with straight lines along the grid.

Nonuniform finite-difference approximations

J.D. Hoffman, Numerical Methods 
for Engineers and Scientists, 
Marcel Dekker, New York, 2001.

u xx∣i , j≈2
Δ x+ui−1, j−(Δ x−+Δ x+)ui , j+Δ x−ui+1, j

Δ x−Δ x+
2 +Δ x+Δ x−

2

ui+1, j≈ui , j+u x∣i , jΔ x++
1
2 u xx∣i , jΔ x+

2

ui−1, j≈ui , j−u x∣i , jΔ x−+
1
2
uxx∣i , jΔ x−

2
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An even better alternative: coordinate transformation

(x , y)→(ξ ,η) such that the boundaries correspond to ξ=const,

η=const , or both.

∂u
∂ x=

∂u
∂ξ

∂ ξ
∂ x+

∂u
∂η

∂η
∂ x

∂u
∂ y

=∂u
∂ξ

∂ξ
∂ y

+∂u
∂η

∂η
∂ y

∂2u
∂ x2=

∂2u
∂ξ2(∂ξ∂ x)

2

+∂ u
∂ξ

∂2ξ
∂ x2+

∂2u
∂η2(∂η∂ x)

2

+∂ u
∂η

∂2η
∂ x2+2 ∂2u

∂ξ∂η
∂ξ
∂ x

∂η
∂ x

∂2u
∂ y2=

∂2u
∂ξ2 ( ∂ξ∂ y)

2

+∂ u
∂ξ

∂2ξ
∂ y2+

∂2u
∂η2(∂η∂ y )

2

+∂u
∂η

∂2η
∂ y2+2 ∂2u

∂ξ∂η
∂ξ
∂ y

∂η
∂ y

u xx+u yy=a (ξ ,η)uξξ+b(ξ ,η)uξη+c (ξ ,η)uηη+d (ξ ,η)uξ+e (ξ ,η)uη
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Nonlinear equations

1. Iteration. Discretize, obtain a set of nonlinear finite-difference equations.

A u⃗= f (u⃗)
A u⃗(k+1)= f (u⃗(k))

2. Newton's method.

u (x , y)=U (x , y)+δ u(x , y)

Linearize with respect to                  , solve the linear system. Updateδ u(x , y)

U (k+1)(x , y)=U (k )(x , y)+δ u(k)(x , y)

Both methods involve solving a linear system at each iteration. If this itself is 

done iteratively, no need to solve to convergence at early stages.
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Boundary element method
∇ 2ϕ=0

∇ 2G( r⃗ , r⃗ ' )=−δ( r⃗− r⃗ ' )

∇⋅[G ( r⃗− r⃗ ' )∇(ϕ( r⃗ ))−ϕ( r⃗)∇ (G ( r⃗− r⃗ '))]=−ϕ( r⃗ )∇ 2(G ( r⃗− r⃗ '))

∮∂V dA(G ( r⃗− r⃗ ' ) ∂
∂ n (ϕ( r⃗ ))−ϕ( r⃗ ) ∂

∂n (G ( r⃗− r⃗ ' )))
=−∫V dV (ϕ( r⃗)∇

2(G ( r⃗− r⃗ ' )))=ϕ( r⃗ ')
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