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Modeling the separation of
macromolecules: A review of current
computer simulation methods

Theory and numerical simulations play a major role in the development of improved and

novel separation methods. In some cases, computer simulations predict counterintuitive

effects that must be taken into account in order to properly optimize a device. In other

cases, simulations allow the scientist to focus on a subset of important system para-

meters. Occasionally, simulations even generate entirely new separation ideas! In this

article, we review the main simulation methods that are currently being used to model

separation techniques of interest to the readers of Electrophoresis. In the first part of the

article, we provide a brief description of the numerical models themselves, starting with

molecular methods and then moving towards more efficient coarse-grained approaches.

In the second part, we briefly examine nine separation problems and some of the

methods used to model them. We conclude with a short discussion of some notoriously

hard-to-model separation problems and a description of some of the available simulation

software packages.
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1 Introduction

Computers are getting cheaper and more powerful every

year. At the same time, separation systems are getting

smaller and faster. The convergence of these two trends has

led to a situation where it is now possible to simulate the key

parts of some separation systems at the molecular level. An

example of this is the atomistic simulation of the transloca-

tion of an ssDNA molecule through a nanopore [1], a

process that may lead to the $1000 genome sought by the

NIH in the USA.

Transport-based separation systems generally represent a

compromise between the physical separation of several

molecular species (e.g. due to their different velocities in the

device) and their spatial spreading due to various diffusion-

related processes. Since most separation devices employ

sieving, liquids and electric forces, modeling efforts must

generally include long-range electrostatic forces, long-range

hydrodynamic forces, frictional and diffusion contributions,

conformational effects (for macromolecules), entropic factors,

gradients of various types, and interactions with surfaces and

obstacles. It is the role of the theoretician to reduce the

number of factors to a bare minimum in order to design

models that can be solved either analytically or numerically.

For example, long-ranged hydrodynamic interactions (HI) are

often neglected in the case of gel-based separations.

Simulating complex processes using numerical models

that include various levels of detail is now widely seen as the

third approach to scientific discovery, complementing the well-

established experimental and theoretical methods. Computer

simulations are more than mere attempts at reproducing

experimental results. Because we have full control over the

simulation parameters, and because we can measure every

conceivable property (including correlations between proper-

ties) of a system during a numerical experiment, simulations

allow detailed autopsies and diagnostics not normally achiev-

able in a laboratory. They also allow us to explore numerous

systems and geometries at relatively low cost.

Historically, several discoveries were first made on a

computer, i.e. in silico. In the field of electrophoresis, one of

us (G.W.S.) and his co-workers [2] first discovered the

phenomenon of DNA band inversion using a computer

simulation of the biased reptation model [3, 4]. Experiments
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later confirmed the existence of this counterintuitive

phenomenon.

In view of the growing importance of computer simu-

lations in the field of separation methods, we believe that

this review is timely. Our hope is that it will be of equal

interest to the experimentalist who wants to understand the

relevant literature and use simulations to guide his/her

laboratory work, to the theoretician who wants to explore

novel systems using numerical methods, and finally to the

computational scientist who wants to use new tools.

This review article has three main parts. In Section 2,

we describe several approaches that are currently being used

to model separation processes. We first examine methods

that include molecular details, then describe algorithms that

simplify the description of the liquid phase, and finish with

several coarse-graining methods that generate even simpler

numerical models. In Section 3, we review nine well-known

problems and the simulation methods that are being used to

study them. In Section 4, we look at the future and discuss a

few problems that have proven hard to simulate and

understand with the current methods. An Appendix then

lists some of the most well-known software packages in the

field; however, it is important to note that many (perhaps

most) simulation studies have actually been based on

simulation programs written by the researchers themselves.

The choice of material is obviously that of the authors; we

recognize that several important algorithms and problems

are missing from this review. Among those, approaches

based on the continuum description of the flow and the

distribution of analytes [5, 6] and reptation models of gel

electrophoresis [4, 7–12] are perhaps the most obvious.

2 Simulation methods

In this section we describe some of the most popular

simulation techniques used in computational studies of

electrophoretic separation methods. It is obviously impos-

sible to review them all – as a matter of fact, new methods

are proposed every year. In that light, we present some of

the main methods in a way that we believe is both logical

(from the more microscopic to the most simplified) and

compact. For a more rigorous discussion on levels of coarse-

graining see [13]. In our descriptions, we do not strive for

the level of detail that would allow readers having no prior

knowledge to do their own simulations. Rather, we present a

bird’s-eye view of the hierarchy of different computational

methods. Correspondingly, the number of references is

large as the interested reader will need to consult specialized

texts in order to fully appreciate the intricacies of these

simulation methods.

2.1 Molecular dynamics

The molecular dynamics (MD) technique is used to follow

the evolution of a large number of interacting particles by

numerically integrating the classical equations of motion.

Although MD is often used to simulate systems at the

molecular level, it is also suitable for modeling larger-scale

systems by implementing coarse-grained methodologies.

Hence, it is a common approach to simulating polymer

dynamics.

When performing MD simulations, the first step is to

calculate the net force on each particle. Newton’s second law

F ¼ ma ¼ m€r then provides the particle’s acceleration.

Numerically integrating by v ¼ v0 þ aDt yields the particle

velocity at a short time Dt later; a second integration x ¼
x0 þ vDt gives its position (in practice, more accurate

numerical integration techniques such as the velocity-Verlet

algorithm [14, 15] are employed). After performing these

calculations for each particle, the new configuration of the

system at time tþ Dt is obtained. This process is repeated to

generate trajectories for each particle that, together, comprise

a series of snapshots describing the evolution of the system.

For conceptual simplicity, we begin by describing a fully

atomistic MD simulation (each atom is represented by one

particle). However, as this is generally too computationally

expensive, we subsequently introduce various techniques to

‘‘coarse-grain’’ the models and make MD a viable tool for

studying separation methods. Although we will discuss only a

few key topics, there are a great number of excellent books

[14–17] and review articles [18–20] that can be used to explore

the rich field of MD simulations in greater depth.

2.1.1 The force field

The interactions between the particles in the system

obviously play a major role. The mathematical forms and

parameters dictating these interactions are known as the

‘‘force field’’; the key concepts used in this review are

discussed below.

2.1.1.1 Lennard-Jones

The interaction between two free, uncharged atoms implies

two primary effects. First, there is a short-ranged repulsion

preventing overlap. Second, there is a long-range attraction

arising from weak but favourable interactions due to induced

dipole effects (dispersion forces). The Lennard-Jones (LJ)

potential [21] is commonly used to model these effects:

ULJðrijÞ ¼ 4eij
s
rij

� �12

� s
rij

� �6
" #

ð1Þ

where rij is the separation between the particles i and j, eij is

the depth of the potential well and s is the effective size of the

particle (see Fig. 1 for a plot of this potential). The numerical

values used for e and s dictate the details of the interaction.

2.1.1.2 Coulombic forces

The other primary non-bonded interaction arises from the

electrostatic interaction between pairs of particles given by
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the Coulombic potential

UCoulðrijÞ ¼
1

4pe0

qiqj

erij

Here, qi and qj are the effective charges on each particle, e0 is

the permittivity of free space, and e is the dielectric constant of

the medium. In atomistic simulations with an explicit, polar

solvent model, including e is not necessary. However, for

simulations with either implicit or non-polar solvent models

(including the mesoscopic models common in coarse-grained

simulations), e is an effective dielectric constant that includes

the screening effects due to the medium (e.g. e5 80 for water).

Although the magnitude of the net charge is obvious for free

ions, in molecules where charges are shared via bonds the

value of the effective partial charges is a vital component of the

force field. Unlike the LJ interaction that decays relatively

quickly, the Coulombic interaction is long ranged. While a

cut-off distance (beyond which contributions are not consid-

ered) is appropriate in one dimension, the long-ranged

contributions are important in two or three dimensions. For

this reason, inclusion of electrostatic effects can be compu-

tationally expensive and many sophisticated techniques have

been developed to address this particular problem. For a

review of many of these methods see [22, 23]; further methods

are discussed in [24, 25].

2.1.1.3 Bonded interactions

In MD simulations, elements of chemical bonds are

captured by implementing potentials to maintain bond

lengths and bond angles. Although other forms are used, a

common choice for both is a harmonic potential such that

the bond stretching UBSðrijÞ and bond bending UBBðyijkÞ

potentials are given by

UBSðrijÞ ¼
1

2
kijðrij � r0Þ2 ð2Þ

UBBðyijkÞ ¼
1

2
kijkðyijk � y0Þ2 ð3Þ

Here, kij and kijk are force constants, yijk is the angle formed

by the bonds joining atoms i, j, k, and r0 and y0 are the

equilibrium separation and bond angle respectively. Hence,

in this model, atoms are bonded together via Hookean

springs while the bond angles oscillate around the

equilibrium value. In atomistic simulations, the various

parameters are an essential part of the force field as they

dictate the details of these interactions. Note that while we

discuss only bond stretching and bending here, terms can

be added to model effects such as restrictions to torsional

angles and cis versus trans configurations [26].

2.1.2 Coarse graining

A fully atomistic MD simulation is quite detailed in the

features it replicates and is appropriate to study dynamics on

the nanosecond and nanometer scales. To probe larger

systems on longer time scales, the use of coarse-graining

techniques is essential.

2.1.2.1 United atoms

The first step in coarse-graining a system is to lump groups of

atoms together and simulate them as a single ‘‘particle’’. For

example, in atomistic MD simulations of proteins, it is

common to group the hydrogens of amino acid side chain

carbons in with the carbon to form a united atom. Reducing

the number of particles results in reduced computing time

while preserving the dynamics of interest. One can extend this

idea and model entire side chains (or even entire monomers)

as single particles. From this, we can then simulate any

polymer as a string of bonded generic beads – each of which

represents a monomer. Of course, the interaction between

adjacent beads is vital; such local effects can be incorporated

by using, e.g. a potential between adjacent bonds in the chain

to give a finite stiffness to the backbone (for example, the bond

angle potential discussed above [27]).

We can extend the level of coarse-graining even further

by lumping polymer beads together and simulating n
monomers as a single particle that now represents a

subchain of the polymer. If n is large enough such that the

length of the subchain is equal to or exceeds the Kuhn

length (a measure of the stiffness of the polymer chain),

correlations between subchains are negligible and we can

simulate the coarse-grained polymer as a freely jointed

chain [28]. This is a standard model for studying a polymer

via MD simulations as it allows for computational simplicity

and efficiency while preserving the dynamics of interest.

What is lost is the direct correspondence to the system in

study and hence an extra layer of abstraction between

simulation and reality is introduced.

Figure 1. Plot of the full LJ potential, the purely repulsive WCA
potential, and the soft potential common in DPD. The positive
soft potential of DPD extends far further and avoids the
singularity of the LJ and WCA potentials.
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2.1.2.2 The WCA potential

In coarse-grained simulations, it is common to use the

purely repulsive Weeks–Chandler–Andersen (WCA) poten-

tial (also known as the truncated LJ potential) to model

particle interactions [29]. This is an LJ potential that is

shifted and truncated at its minimum value (see Fig. 1) so

that it ends smoothly at a distance rc ¼ 21=6s:

UWCAðrijÞ ¼
4eij

s
rij

� �12

� s
rij

� �6
� �

þ eij for rijorc

0 for rij � rc

8><>: ð4Þ

However, the standard LJ interaction is often used to study

systems with varying affinities between different types of

particles (this is implemented by varying the eij’s).

2.1.2.3 Finitely extensible bonds

In a coarse-grained model, the use of harmonic potentials to

connect adjacent beads can lead to unphysical bond

stretching effects. For this reason, a finitely extensible force

is needed such that there is a hard limit on the bond length.

The most common choice is the finitely extensible nonlinear

elastic (FENE) potential:

UFENE ¼ �
1

2
kr2

0 ln 1� r2

r0
2

� �
ð5Þ

Here, k indicates the stiffness of the bond and r0 gives the

maximum bond length (the potential shoots to infinity as r
approaches r0). For appropriate values of k and r0, the

occurrence of ‘‘bond crossing’’ is extremely rare and hence

behaviour appropriate for a self-avoiding polymer is

produced [30]. It is interesting to note that this form is an

approximate solution to the inverse Langevin function; in

some cases, it may thus account for the entropic restoring

force, which arises from stretching a subchain [28].

2.1.3 Simulating a polymer

Putting the above together, the simplest model of a polymer

in a coarse-grained simulation is a freely jointed chain of

beads (which can either carry a net charge or be neutral)

interacting by the WCA potential (or the LJ potential when

short range attractions are desired) and with immediately

neighbouring monomers bonded via the FENE potential.

Extension to branched polymers is trivial. Although we have

sacrificed many details, we have preserved effects such as

excluded volume, the entropic elasticity, and the non-

crossability of bonds. Although this model may seem very

crude, it does allow for a realistic scaling behaviour of

polymeric properties such as the radius of gyration and the

diffusion coefficient with respect to the degree of polymer-

ization. This approach also represents the most realistic

model of polymers for which experimentally relevant

simulations are feasible. Note that although this ‘‘bead–

spring’’ model is a common approach, other models can be

employed. For example, algorithms can be implemented to

maintain the bond distance at a fixed length [31, 32]

resulting in a ‘‘bead-rod’’ model (or a ‘‘pearl-necklace’’

model for the case of the rod length being comparable to the

diameter of the bead) [33].

Now that we have a model for the polymer, we can add

other components. For example, a common scenario

involves simulation of polyelectrolytes with free ions. To

accomplish this, ions can be defined as WCA particles

carrying a net charge. Additionally, one can include features

such as obstacles or boundaries (e.g. walls) by building them

out of particles or defining them using mathematical

constraints. The final, and critical, component of the

simulation system is the solvent. As the model used for

the fluid impacts both the dynamics that are observed and

the computational time, Sections 2.2–2.4 will focus on

various ways of treating the fluid.

At this point, it is important to mention that choosing a

method of controlling the temperature is often a crucial

consideration in MD simulations; in fact, it is also one that is

often intimately connected to the choice of solvent model.

Implementing a thermostat is particularly critical when an

external field is adding energy to the system – as in electro-

phoresis. Although there are schemes based on rescaling the

velocities [34] or periodically assigning random velocities [35],

such algorithms can lead to artefacts as local momentum is

not conserved (a particular problem when hydrodynamics are

of interest [36]). In coarse-grained simulations, the method

chosen for treating the fluid often involves a particular

temperature control scheme via the coupling of the analyte

(e.g. the polyelectrolyte) to the fluid. An important case is the

thermostat developed for dissipative particle dynamics (DPD)

(Section 2.3.1), which can be used independently of the fluid

model and, for several reasons, has been a significant

advancement in the field [37]. Finally, in the case of

performing Langevin dynamics (LD) or Brownian dynamics

(BD), the temperature is explicitly in the equation of motion

(Section 2.4). Although discussing the details of these algo-

rithms (and others [38–41]) is beyond the scope of this review,

the interested reader is encouraged to investigate these

various schemes starting with the citations given and the

discussion of solvent models in the following sections.

2.2. Explicit fluid

At the atomistic level, many models exist that explicitly

describe a water molecule [42–45]. In fact, developing

appropriate models for simulating water alone is the subject

of active research. In coarse-grained simulations of solvents,

we group atoms, and even molecules, together and simulate

them as a single bead. The use of the WCA potential for this

solution of beads is found to provide a good solvent,

regardless of temperature [46]. The advantage of using an

explicit fluid is that it is conceptually obvious and preserves

the long-range HI that correlate the movement of objects in

a fluid. However, in practice, this results in much of the

simulation time being dedicated to calculating the details of
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the fluid bead dynamics, which are often not of interest. For

these reasons, several techniques for modeling the fluid to

maintain the HI while neglecting the computationally costly

details of the fluid motion have been developed. These

models are discussed in the following section.

2.3 Mesoscopic fluid

It is possible to describe hydrodynamic effects without

resorting to an explicit description of fluid molecules or the

discretization of the continuous Navier–Stokes equations. In

particular, a clever use of conservation laws allows meso-

scopic methods to employ local algorithms that recover the

solution to the hydrodynamics equations in the large-scale/

long-time limit while at the same time bypassing the

molecular details of the fluid and thus dramatically reducing

the computational cost of the simulation. In the following

sections we will review three mesoscopic approaches,

namely DPD, stochastic rotation dynamics (SRD) and lattice

Boltzmann (LB).

Following the description of these mesoscopic methods,

Section 2.4 will introduce LD and BD. A comparison of the

different methods discussed ensues in Section 2.5 where a

schematic is presented to summarize each of the methods.

2.3.1 Dissipative particle dynamics

In DPD, the fluid is modelled by large particles interacting

via a soft potential [47–49]. This allows for a reduction in

computing time in two ways. First, as each DPD fluid bead

represents a cluster of fluid molecules moving together in a

coherent manner, the simulation tracks a much lower

number of interacting objects. Second, since with a soft

potential the forces cannot be arbitrarily large, we can

reduce computing times by increasing the integration time

step. All particles interact by three forces: a conservative

force FC, a dissipative force FD, and a random force FR:

Fi ¼
X
i6¼j

FC
ij þ FD

ij þ FR
ij

� �
ð6Þ

where it is assumed that the interactions are negligible

beyond a cut-off radius rc. Pairwise potentials ensure that

momentum and angular momentum are conserved. The

force FC
ij represents and can include any conservative forces

that act on the particle. A common choice is a soft repulsion

(see Fig. 1) acting along the line of centres such as

FC
ij ¼

aijðrc � rijÞr̂ij for rijorc

0 for rij � rc

(
ð7Þ

where aij parametrizes the maximum repulsion. The

dissipative force is an inter-drag force between a pair of

soft fluid particles moving through each other opposing

their relative motion uij and dissipating heat:

FD
ij ¼ �oDðrijÞzðr̂ij � uijÞr̂ij ð8Þ

where z is the friction constant between the two clusters.

The random noise force is given by

FR
ij ¼ oRðrijÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2zkBT

p gijffiffiffiffiffi
Dt
p r̂ij ð9Þ

where gij is a random number of zero mean and unit

standard deviation. To satisfy the fluctuation–dissipation

theorem, the dissipative and random forces are interrelated

through the weight functions, as oDðrÞ ¼ ½oRðrÞ�2.

The random and dissipative forces act as a source and a

sink for heat, respectively. Therefore, DPD, unlike BD or LD is

an implicit thermostat [37, 50] that conserves linear and angular

momentum and thus recovers hydrodynamics in the macro-

scopic limit. It should be noted that DPD does not conserve

total energy, but only mass and momentum. Solutes can be

included as DPD beads and by the inclusion of a bead–spring

type force in Eq. (6), DPD can simulate polymers as well [50,

51]. In fact, DPD can be used as an effective thermostat that

conserves HI, independently of the fluid model [37].

2.3.2 Stochastic rotation dynamics

The DPD beads represent clusters of many particles but all

bead–bead interactions must still be evaluated. In SRD

[52–54], also called multiparticle collision dynamics [55, 56]

or real-coded lattice gas [57, 58], collisions between fluid

particles are replaced by multiparticle collision events that

omit the molecular details and eliminate the need to

calculate the forces between the fluid particles. These events

are defined to conserve mass, momentum, and energy such

that the hydrodynamic equations of motion are obeyed on

sufficiently long length and time scales [59]. SRD simula-

tions occur in two steps. During the first, or streaming, step,

the particles move ballistically, and their positions riðtÞ are

updated in discrete time intervals dt:

riðtþ dtÞ ¼ riðtÞ þ viðtÞdt ð10Þ

The second, or collision, step transfers momentum between

particles. The simulation domain is partitioned into cells.

The number of particles in each cell may vary from one cell

to another but the total number is conserved. Each cell has a

centre of mass velocity vCM, which corresponds to the local

macroscopic velocity. The collision step is a simple non-

physical scheme that is constructed to conserve momentum.

Multiparticle collisions within each cell are represented by

the operation

viðtþ dtÞ ¼ vCMðtÞ þ RðviðtÞ � vCMðtÞÞ ð11Þ

By making the collision operator, R, a rotation through an

angle a about a randomly chosen axis, conservation of

energy, isotropy and a Maxwell–Boltzmann velocity distri-

bution are met in the continuum limit. Other choices allow

SRD to operate as a thermostat as well [60]. Unfortunately,

Galilean invariance is broken by the discretization of space

into cells. However, this can be completely remedied by

performing the collision operation in a cell grid, which is

shifted each time step by a random vector [61, 62].

Electrophoresis 2009, 30, 792–818796 G. W. Slater et al.
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When integrating SRD into a standard MD simulation

the solute particles can be coupled to the momentum of the

fluid by including them in the SRD collision step (Eq. 11)

[55, 56, 63–65]. In typical simulations of a polymer, on the

order of 102 MD time steps are performed between SRD

collision events [54, 66–68]. This separation of time scales

ensures that the momentum transferred to the polymer

during the collision step is well distributed throughout the

chain [69]. Another common scheme uses a hybrid SRD/

MD approach in which not only the solute–solute but also

the solute–solvent interactions are handled by an MD algo-

rithm, while solvent–solvent interaction is simulated by

SRD [53, 70, 71].

2.3.3 Lattice Boltzmann method

LB coarse-grained models [54, 72, 73] are based on a solution

of the discretized Boltzmann transport equation. The main

quantity in the LB approach is the velocity field, rather than

fluid particles, and it is an inherently statistical approach,

where discrete momentum distributions are represented on

a spatial grid.

The discretization of positions and momenta using

finite sets of directions greatly simplifies the problem. The

most frequent mesh types for the LB simulations are the

D2Q9, D3Q15, and D3Q19 lattices, where DkQn refers to

the number k of dimensions and to the discrete number n of

velocity vectors, ei.

A set of distribution functions Gi(r, t) is defined on each

lattice site r. Each of these can be interpreted as the fraction

of fluid that will move with the ith discretized velocity at

time t. The discretized Boltzmann equation provides a

generic description for the time evolution of the probability

density, but there is freedom in the choice for the actual

form of the collision integral. A common formulation is the

Bhatnagar–Gross–Krook approximation, where

Giðr þ eiDt; tþ DtÞ ¼ Giðr; tÞ �
Dt

t
ðGiðr; tÞ � GEQ

i ðr; tÞÞ

ð12Þ

where t is the phenomenological relaxation time, which

prescribes the timescale for the relaxation of the actual

population Gi to the equilibrium particle distribution func-

tion GEQ
i . In the low velocity approximation, GEQ

i can be

expressed as

GEQ
i ¼ wir 1þ ei � u

c2
s

þ ðei � uÞ2

2c4
s

� u2

2c2
s

" #
ð13Þ

where r is the hydrodynamic density and cs is the speed of

sound, which is determined by mesh properties. The

weights, wi, must be suitably chosen to recover the macro-

scopic Navier–Stokes equations and are dependent on the

mesh configuration [54]. The viscosity of the LB fluid is

determined by the choice of the relaxation rate.

LB can be coupled to small suspended spheres by

treating them as point particles that interact with the fluid

through a friction force proportional to the relative velocity

obtained via linear interpolation from the surrounding

lattice sites [74, 75]. By adding fluctuation terms to both the

fluid and the embedded particles, LB can operate as an

adequate thermostat [74]. The correct treatment of a fluc-

tuating LB algorithm has been recently addressed in several

papers [76, 77].

2.4 Langevin and Brownian dynamics

Going beyond mesoscopic models, further coarse graining

can be achieved by avoiding direct simulation of the fluid

altogether. The timescale of individual collisions with

solvent molecules (causing frictional drag and Brownian

motion) is much smaller than the time scales relevant to

electrophoresis. It is computationally advantageous to

coarse grain out the fine details of the collisions and

simply include their statistical effect on the solute. One

may consider implicitly the two main effects of the fluid

acting on the particle: (i) a frictional force opposing its

motion and (ii) random kicks arising from collisions with

the solvent. The frictional (or dissipative) force FDðtÞ
removes energy from the particle while the fluctuating

Brownian force FBðtÞ adds energy to the particle. Hence, at

this coarse-grained level, the fluid is included solely in a

statistical manner governed by the fluctuation-dissipation

theorem. By replacing the explicit fluid with a drag and a

Brownian force, we lose the long-range particle–particle

interactions mediated by the fluid. This makes such an

approach particularly tempting when the HI are negligible

or not of primary concern. Nevertheless, we will see how

they can still be included.

2.4.1 Pure Langevin and Brownian dynamics

In LDs, starting with Newton’s second law as we did

for pure MD, we now add a dissipative drag force FDðtÞ
and a Brownian force FBðtÞ (in addition to the conservative

forces we had before, FCðtÞ) to end up with Langevin’s

equation

maðtÞ ¼ m€rðtÞ ¼ FCðtÞ þ FDðtÞ þ FBðtÞ ð14Þ

where m is the mass of the particle. For the dissipative term,

one usually assumes Stokesian drag on a spherical

particle, FDðtÞ ¼ �zvðtÞ, z being the friction coefficient of

the particle in the fluid. The velocity vðtÞ is then the velocity

of the particle with respect to the local solvent velocity. This

is an important detail if one wants to consider flow or

long-range HI. Although FBðtÞ is due to the solvent

molecules colliding with the particle, it can only model the

net effect of a large number of collisions. The Brownian

force is taken as a centred Gaussian random variable [78]

with zero mean and variance 2zkBT=Dt, where Dt is the

integration time step. The fact that the variance is related to

the friction coefficient z is again a consequence of the

fluctuation–dissipation theorem. On the time scale of
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interest the values of the Brownian force are uncorrelated at

different time steps.

It can be shown that the energy transferred to the

particle from a single collision with a solvent molecule

decays on the viscous time scale m=z [79]. If, as is typically

the case, this is much smaller than the timescale over which

FCðtÞ changes (overdamped limit), we may set maðtÞ ¼ 0 in

the Langevin equation and obtain the following discretized

equation of motion:

rðtþ DtÞ ¼ rðtÞ þ Dt

z
½FBðtÞ þ FCðtÞ� ð15Þ

which defines BD. For a more rigorous derivation see [80].

2.4.2 Incorporating long-range hydrodynamic

interactions

Traditionally, LD does not include HI between particles.

This approximation is valid for certain systems (e.g. when

HI are screened out), but in many cases HI have a

significant impact on the dynamics [81].

To see how we can incorporate them, let us consider a

particle i. As it is moving with a certain velocity, it slows

down due to the drag force. Since the drag force exerted by

the fluid on a particle must be equal and opposite in

direction to the force exerted by the particle on the fluid,

this causes the fluid to move. Hence, the effect particle i has

on particle j is that the latter experiences a modified drag as

it is no longer surrounded by a stationary fluid. The

magnitude of this coupling depends on their relative

separations. On the time scale of interest this perturbation

can generally be considered to be felt instantaneously. In a

many-particle system, a common approximation is to ignore

screening issues and to consider a superposition of all

pairwise HI [82].

Consideration of the fluctuation–dissipation theorem

implies that any modulation of the drag term must be

accompanied by correctly modifying the magnitude of the

Brownian term. An interesting consequence is the correla-

tion of the Brownian forces on different particles at the

same time. In practice, the relationship between the drag

and the Brownian term is determined via interaction tensors

(mainly the Oseen or Rotne–Prager–Yamakawa tensor).

Application details can be found in [79, 80, 82–87].

2.5 Comparison of fluid models

We have presented a hierarchy of fluid models from

the most detailed explicit solvent models to the mesoscopic

and, finally, implicit (LD and BD) approaches. Using

explicit models (especially the atomistic variant) is

essential when high accuracy and the chemical details (such

as different hydrophobicities of different parts of the

analyte) are required. In most other cases, simpler

approaches should be used. All three mesoscopic methods

(DPD, SRD, and LB) use a simple (but often sufficient)

model to describe fluid dynamics and can also act as

thermostats that define the local temperature when coupled

to MD particles.

Owing to their conceptual differences, these methods

use different types of parameters to describe the fluid, which

results in a different suitability for specific problems. For

example, while the fluid viscosity is directly accessible in LB

methods, it becomes a combination of different parameters

and can be controlled only indirectly in DPD [88, 89].

Similarly, while DPD and LB can only approximate the

continuous-time dynamics of the fluid when the discrete

time step is small, SRD is proven to yield correct long-time

hydrodynamics for any step size. However, SRD’s transport

properties depend explicitly on the chosen time step [59].

More differences between the methods arise if confined

fluids or interactions with large obstacles or particles are

studied. Here, the ability to treat different boundary condi-

tions becomes important, which is covered in detail in the

literature [53, 63, 90–94].

All three methods share a similar computational effi-

ciency, and computation times depend mainly on the

implementation, the computer system, and also the inves-

tigated system. However, the speedup over explicit fluid

simulations can be a factor 20 or higher [74, 95].

These mesoscopic models describe compressible

fluids in which hydrodynamic forces need time to

propagate through the medium. For this reason, as well as

considerations of computational speed, performing LD with

proper inclusion of HI can be preferable in some cases [96].

Furthermore, if the full treatment of HI is not necessary, the

use of pure LD or BD is advisable.

We summarize the different ways of treating the solvent

in MD simulations with a schematic that depicts the most

important features of different fluid models (Fig. 2).

2.6 Monte Carlo simulations

In addition to the coarse-graining introduced previously, it is

reasonable to ask whether it is possible to also coarse-grain

the dynamics itself in order to achieve further computa-

tional speedup. This is the motivation behind the develop-

ment of the various Monte Carlo (MC) methods.

In the broadest sense of the term, any computational

method involving randomness can be called an MC method

(the name says it all!). This broad definition would, however,

include, e.g. BD, already considered under the banner of MD.

In the spirit of the preceding discussion, we would therefore

call an MC method any approach that sacrifices at least some

of the dynamical details of the MD methods. How much is

sacrificed can vary. At one extreme are methods designed to

study equilibrium properties by quickly exploring large parts

of the phase space. In this case, unphysical moves, such as

rotations of large parts of chains in the pivot algorithm [98],

can be introduced on purpose to speed up the simulation.

Since in simulations of electrophoresis and related separation

methods we are primarily interested in the dynamics of the
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analytes, such MC approaches are less useful for our

purposes, although they can be applied to some auxiliary

problems, such as generating an equilibrated entangled

sieving polymer solution in which the analytes would then

migrate, studying the properties of capillary coatings, or

finding the free energy of a DNA molecule as a function of its

coordinate along a nanopore. We do not discuss these

methods here; they are reviewed, e.g. in [99–101]. Instead, we

concentrate on dynamical MC algorithms.

MC methods can be divided into two groups. In

off-lattice MC methods, particles and monomers of polymer

chains can occupy any positions in space. But one can also

discretize the space allowing the particles to reside only at

the nodes of a lattice. Such methods are known as Lattice

MC (LMC). Since the sets of possible configurations and

moves are then discrete, they can be described using integer

arithmetic and often special computational techniques, such

as multispin coding ([102], Section 15), which allow signif-

icant savings in computer time and memory compared with

off-lattice MC. Of course, the cost of increased efficiency in

LMC is even less realism!

Our ideal goal when simulating electrophoresis

problems is to make quantitative predictions for the mobility

and diffusivity of the analyte. Although this is possible in

simple cases, MC simulations are generally used to predict

trends (including scaling laws) and qualitative features,

which in many cases is quite acceptable.

We start our discussion of MC methods with approa-

ches to simulating hard particles. We then discuss some

chain simulation methods. As discussed in Section 1, we

will not describe the MC methods used to simulate DNA

reptation models [103].

2.6.1 Methods for particles

Consider a particle undergoing Brownian motion in the

presence of an external force (e.g. an electric field) and some

obstacles (e.g. gel fibres). In MC, this becomes a simple

biased random walk. At each time step, a move is randomly

selected from a predefined set, and a test is used to accept or

reject it. A simulation is simply a series of such moves.

Different MC algorithms are defined by: (i) the set of moves

and the probability of selecting a particular move from that

set; (ii) the acceptance test for the selected move; and (iii) the

time step per move. Although the physics behind these three

elements can be subtle (the main issue is generally the

definition of the time scale), the simulation itself is often

quite simple.

The most popular MC approach is Metropolis MC [104],

a method designed to study equilibrium configurations. In

the simplest lattice variant, at each step the particle simply

tries to move to any of the neighbouring sites on the lattice,

and all possible moves can be selected with equal prob-

ability. Moves can be accepted or rejected. If the change in

energy from the initial to the final configuration is negative

(DUo0), the move is accepted; otherwise, it is accepted

with probability expð�DU=kBTÞ (the Boltzmann factor). If

the move is rejected, the particle remains in its previous

A B C

D E F

Figure 2. Schematic depicting different methods of modeling the solvent in MD simulations. In each case, a representative polymer is
shown as a chain of beads connected by springs. (A) The explicit fluid approach models the solvent as beads interacting through a short-
range potential and simulated to the same level of detail as the polymer. Fluid particles are often chosen to be the same size as the
monomers. (B) The DPD method typically models the solvent as large, overlapping, softly repulsive spheres. (C) The SRD method
replaces collisions between particles by a multiparticle collision operator, which models the local collisions as a rotation of particle
velocity through an angle about a randomly chosen axis. (D) In LB the fluid is discretized to a grid. Arrows symbolize the discrete set of
allowed velocities. The mesh shown is a D2Q9 (eight velocity vectors plus the zero velocity in two dimensions). (E) LD/BD represents the
fluid implicitly by including a friction and a random term in the equation of motion of each monomer. HI can be included by introducing
an additional long-range force between monomers (illustrated for one bead as a series of dashed lines). (F) Pure LD/BD neglects
HI — friction and Brownian forces are the only effects of the solvent that are included. After Padding and Louis [97].

Electrophoresis 2009, 30, 792–818 General 799

& 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com



position, but the clock is still advanced by one unit of time.

This is known as the Metropolis test. The latter guarantees

that the correct equilibrium properties are obtained.

However, reproducing the correct dynamics is problematic.

First of all, how the MC unit of time (an attempted move) is

related to actual time is usually left undefined, which makes

quantitative predictions difficult. Moreover, in a high field

the method is even qualitatively wrong: once jDUj=kBT � 1,

all steps along the field are accepted and all those against the

field are rejected; as a result, the velocity saturates and the

diffusion coefficient vanishes. A different approach is then

required.

In the 2-D lattice variant of such an approach [105], the

system is modelled as a square lattice, where each node is

either free or is an impenetrable obstacle. At each time step,

the particle can move in one of four directions (�x̂;�ŷ).

Unlike in the Metropolis algorithm, the probabilities of

selecting each of these moves are no longer equal; instead, if

an external force ~F ¼ Fbx is applied to the particle, they are

given by [105]

p�xðeÞ ¼
1

ð1þ e�2eÞð1þ tanhðeÞ=eÞ

p?ðeÞ ¼
1

2ð1þ e cothðeÞÞ

ð16Þ

where the scaled force e is given by

e ¼ Fa

2kBT
ð17Þ

with a the mesh size of the lattice. Note that the algorithm is

rejection-free in the absence of obstacles; however, moves

leading to an overlap between the particle and an obstacle

are rejected. The time step is no longer arbitrary as it is

given by the expression

tðeÞ ¼ tB

1þ e cothðeÞ ð18Þ

where tB 	 tðe ¼ 0Þ is the mean duration of a (Brownian)

jump in the absence of an external field. The latter is directly

related to the free-space diffusion coefficient D0:

tB ¼
a2

2D0
ð19Þ

It is this relation that connects the MC and experimental

times. The above choice of transition probabilities and the

time step can be shown [105] to give the correct average

velocities for fields of arbitrary strength. However, the

dispersion coefficient is correct only in the limit of a

vanishingly small field [106]. In this limit, the dispersion

coefficient D can actually be obtained more efficiently by

using the Nernst–Einstein relation:

D ¼ lim
F!0

kBTmðFÞ ð20Þ

where mðFÞ ¼ vðFÞ=F is the mobility. In a non-vanishing

field, the correct dispersion coefficient can be obtained by

varying the time step (making it a random number) [106]. If

a constant time step is desired (as is the case for the

numerically exact algorithm that we describe next), the MC

moves themselves must be modified [106, 107].

2.6.1.1 Exact calculation method

Standard MC methods require a large amount of simulation

data in order to have a low statistical error. In recent years,

our group has developed a numerical method that allows

one to compute the exact mean velocity and diffusion

coefficient of a particle moving on a lattice with impene-

trable obstacles. This method, which basically gives the exact

solution to the MC simulation, is both faster and more

precise. We now show the basics of this approach. For

further details, the reader can refer to [108, 109].

The first step is to obtain the transition matrix T whose

elements Tij are probabilities that a particle on site j jumps

to site i in a single time step. If at time t, the probability of

presence of the particle on site i is ni(t), then after a single

time step,

niðtþ tÞ ¼
X

j

TijnjðtÞ ð21Þ

Implicitly, this assumes that the time step is unique; since

the latter depends on the field intensity, the method works

only in a uniform field (unless the field is so weak that the

field dependence of tðeÞ can be neglected). The steady state,

defined by the equality niðtþ tÞ ¼ niðtÞ 	 ni, is thus the

normalized eigenvector of T with the eigenvalue of unity

(the normalization condition is
P

i ni ¼ 1). This eigenvector,

which can be obtained with an arbitrary precision by a

simple numerical calculation, is the exact solution of the

LMC algorithm.

Once the steady-state occupation probabilities niðeÞ are

computed, the mean velocity of the particle, vðeÞ, can be

obtained by averaging over all sites, vðeÞ ¼
P

i
niðeÞviðeÞ,

where the average local velocity on site i is

viðeÞ ¼
pþxðeÞLþðiÞ � p�xðeÞL�ðiÞ

tðeÞ ð22Þ

with the displacements L� ¼ a if there is no obstacle in the

given direction and zero otherwise.

The dispersion coefficient D in the zero-field limit can

be calculated using Eq. (20). In a non-vanishing field, D can

be obtained with a numerically exact method based on the

generalized Taylor–Aris dispersion theory [110].

2.6.2 Methods for chains

Simulating polymer chains presents additional challenges

since connectivity and (often) non-crossability of chains have

to be maintained during the simulation. In MC simulations

of polymer chain dynamics, only one monomer (or, at most, a

small local group of monomers) is moved at each step.

This choice is necessary in order to keep the frequency of

moves leading to overlaps sufficiently low. However, a unit

of time should now correspond to one attempted move

per monomer.
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2.6.2.1 Off-lattice methods

In the most straightforward and commonly used off-lattice

MC method for bead–spring chains [111], a single step

consists in displacing a monomer chosen at random along

each axis, by an amount chosen from the uniform

distribution on ½�D=2;þD=2�, where D is a predefined

constant. The event is accepted or rejected according to the

Metropolis criterion, but all attempts make the clock

advance. If the arbitrary parameter D is too small, the

evolution of the system may be too slow; if D is too large, the

rejection rate is too high. The optimal D normally

corresponds to an acceptance rate of about 50%, although

a lower D can make the dynamics more realistic. The same

potentials as for MD (e.g. the FENE and WCA potentials) can

be used. Besides this, one can use much simpler potentials,

such as a square-well bond potential that is zero within a

specified range and infinity outside, with the range chosen

(just as in FENE) to avoid chain crossings. This improves

the efficiency as the computation of complicated potential

functions is avoided. However, in this case the chain will

have no tension and so square-well potentials should be

avoided in strong fields (see below).

In the bead–rod model [112], the bond lengths have to

be preserved explicitly. The simplest moves are then rota-

tions of a monomer around the axis connecting its two

neighbours (for an end monomer, the rotation is on the

sphere with the centre at its neighbour). Note, though, that

in a strong electric field, when the chain is stretched, such

moves are rather inefficient and this may lead to unphysical

artefacts.

2.6.2.2 Bond-length-preserving lattice methods

In lattice models of polymers, monomers still hop between

lattice sites, like in single-particle models. To avoid introdu-

cing a bond potential and still make sure that neighbouring

monomers remain close in space, only those motions that

keep all bond lengths within a certain range are allowed. The

first models were particularly restrictive in this respect,

keeping all bond lengths strictly fixed. Verdier and Stock-

mayer [113] have used a simple cubic lattice requiring the

polymer bonds to coincide with the lattice bonds and thus

making them all of unit length. In the first version of the

model, only single-monomer motions were allowed. This was

later found too restrictive and various two-monomer motions

were added, the most popular of which is the so-called

crankshaft motion [114]. Unfortunately, the dynamics in such

models become very slow if we introduce excluded volume

interactions by forbidding two monomers to reside on the

same site. Moreover, Madras and Sokal [115] showed that for

any model with any finite set of moves where neighbours

along the chain remain neighbours on the lattice some

configurations cannot be reached (i.e. the algorithm is non-

ergodic). Nevertheless, in those cases where excluded volume

interactions can be neglected, the Verdier–Stockmayer and

other similar approaches can still be useful.

2.6.2.3 Bond-fluctuation algorithm

The deficiencies of the fixed bond length MC models led to

the development of lattice methods with fluctuating bond

lengths. The most popular one is the bond-fluctuation

algorithm (BFA) first proposed by Carmesin and Kremer for

2-D problems [116] involving both linear and branched

polymers. Although BFA is not strictly ergodic, its non-

ergodicity problems can probably be neglected for all

practical purposes. The algorithm was extended to 3-D by

Deutsch and Binder [117].

In the BFA (Fig. 3), the monomer is represented by a

2
 2 square (four lattice sites) in 2-D and a 2
 2
 2 cube

(eight lattice sites) in 3-D. A lattice site can be occupied by

only one particle at a time. In 2-D, the bond lengths between

connected monomers must be less than 4, while in 3-D

bond lengths must be �
ffiffiffiffiffi
10
p

, excluding
ffiffiffi
8
p

. These simple

conditions allow for a self-avoiding walk in which there is no

crossing of bonds. Each attempted move consists of first

picking a monomer at random and moving it by one lattice

site along one of the lattice axes. As long as the new

conformation does not create monomer overlaps or create a

forbidden bond length the move is accepted. As before, a

unit time corresponds to one attempted move per monomer.

For simulations of electrophoresis, obstacles can be

placed at some lattice sites and the field is treated as in other

models, by using the Metropolis test. In principle, other

interactions, such as intra- and interchain interactions

between monomers, can be included as well, but in most

cases this is unnecessary (an exception is for the proper

modeling of polymer stiffness, an important factor for DNA

simulations).

0

1

2 3

4

5 6

Figure 3. A polymer chain in the 2-D BFA. Each gray square
represents a monomer occupying 2
 2 sites. All allowed bond
lengths from 2 (between monomers 2 and 3) to

ffiffiffiffiffiffi
13
p

(between
monomers 3 and 4) are present in this figure. Allowing only
these bond lengths and forbidding the monomers to overlap
with the obstacle (black) is sufficient to ensure that the chain
does not pass through the obstacle and does not cross itself.
After Ref. [118]

Electrophoresis 2009, 30, 792–818 General 801

& 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com



2.6.2.4 Problems in strong fields

LMC models considered here have severe problems in strong

electric fields. For instance, in gel electrophoresis simula-

tions, the speed of the polymer decays exponentially as a

function of the field, while experimentally, the electrophoretic

mobility is essentially field-independent in the strong-field

limit. To understand the reasons for this failure, consider a

chain hooked upon a post with the two unequal arms

pointing along the field and sliding off the post [119]. The

sliding time is inversely proportional to the field intensity.

But in LMC, since only local moves (e.g. single-monomer

moves) are allowed, the only way for the chain to move is via
chain slacks originating at the end of the short arm and

propagating against the field. The probability for the slack to

go all the way to the post decays exponentially with the

potential energy difference between the tip of the arm and the

post. If the short arm of the hooked conformation is of length

Ls, the mean time between successful events will thus

increase roughly like expðþFLs=kTÞ, where F is the force on

the monomer. This increase being an artefact of the model

(the tension does not propagate along the backbone), the

model can work only if the argument of this Boltzmann

factor is much smaller than unity. Since Ls is proportional to

the number of monomers in the chain, N, the maximum

allowed external force scales like F / N�1. This is too

restrictive to be useful in practice. In order to solve this

problem, one must modify the lattice models by adding non-
local moves, an idea first implemented by Deutsch and Reger

[119] and Duke and Viovy [11] for reptation models. Azuma

and Takayama [120] added such moves to the BFA. Although

their approach is not very carefully justified, it produces

qualitatively reasonable results.

2.6.2.5 Numerically exact methods for chains

LMC algorithms for chains can sometimes be solved exactly,

similar to how this is done for single particles. This was done

by Boileau and Slater [121] for the BFA. The major

complication is that each possible chain conformation and

location should be considered a separate state and the number

of such conformations grows exponentially with the chain

length. For this reason, the approach is only practical for very

short polymers (linear or branched). Of course, the solutions

are only exact for the dynamics of specific algorithms, which

are themselves approximate. We should also mention a

numerically exact solution of the MC approach to studying

polymer translocation through nanopores [122] that reduced

this problem to a 1-D biased random walk by using a

calculated dependence of the entropy of the chain on the

number of monomers that have passed through the nanopore.

3 Simulation examples

In this section, we discuss nine current problems in the

fields of separation science and electrophoresis. We examine

the systems by focusing on the type of simulation methods

that are being used to study them. The choice of a numerical

model is directly related to the question being asked. For

example, coarse-grained methods are ideal for generic

investigations of the basic mechanisms leading to separa-

tion while microscopic methods may be required when

more specific problems are to be solved. To give the reader a

broad view of the importance of simulations in our field, we

have selected a wide range of problems.

3.1 EOF

EOF is ubiquitous in electrophoresis. EOF occurs when there

is an electric field with a tangential component at a charged

surface in contact with a liquid. The mobile counterions that

make up the Debye layer next to the surface viscously drag

the rest of the fluid. Although it is sometimes possible to

solve for the fluid velocity profile analytically [123], computa-

tional modeling is often used to garner a better under-

standing of EOF. Let us examine the simple example shown

in Fig. 4 where we can see the results of some MD

simulations, which are described in detail by Tessier and

Slater [124]. The solid line shows the net charge distribution,

which has a maximum next to the wall followed by an
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Figure 4. The radial profiles of the fluid velocity from MD
simulations with and without a polymer coating, as well as the
net charge density profile. The fluid velocities have been
normalized by the bulk fluid speed in the coating-free case
while the charge density has been normalized by its maximum
value. The radial distance is in units of the inner radius of the
tube. The fluid density is 0:8s�3 while the bulk and surface
charge densities are 0:02s�3 and 0:1s�2, respectively. The
coating has a grafting density of 0:05s�2 and degree of
polymerization N 5 20. Further details can be found in [128,
124]. The schematic representation of the system is roughly
aligned with the graph.
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exponential decay as predicted by Debye–Hückel theory. The

slight bump in this curve is the result of packing of the water

beads near a fixed corrugated wall. This effect is even more

evident if one looks at the individual ion density profiles. The

fluid velocity (dotted curve) changes in the region where there

is a net charge but takes on a bulk value outside of the thin

charged region near the wall.

For microfluidic devices with complex geometries the

EOF profile is often non-trivial to find. For the entropic

trapping device developed by Han and Craighead [125],

simulations were carried out using DPD with a slip

boundary condition to reproduce a realistic EOF profile in

order to include its effects in more complex simulations

[126]. Similarly, it has been shown that the LB method can

also be used to effectively model EOF [127]. The problem of

EOF in complex geometries has also been investigated by

solving the Navier–Stokes equation numerically [6]. In fact,

the only fluid model presented in this review that has not

been used for modeling EOF to our knowledge is the

recently developed SRD algorithm.

In the context of electrophoretic separation, the

presence of EOF often has a deleterious effect on the reso-

lution. For example, the EOF increases dispersion in capil-

lary electrophoresis because the EOF is non-uniform

due to the non-uniform charge distribution on the wall

[5, 124, 129]. For this reason, polymer coatings are often

used to quench the EOF. They have the additional benefit of

preventing wall–analyte interactions that cause additional

dispersion in the system [130]. Simulations of polymer

coatings tend to use a system size that is thicker than both

the Debye layer and the polymer coating. Beyond the

counterions and polymer coating the fluid velocity profile

reaches a plateau. The fluid speed in this plateau region

(referred to as the bulk speed) is the same regardless of the

system size and thus these miniature (often nano-scale)

simulation systems provide realistic models for much larger

experimentally relevant systems.

Simulations of EOF in the presence of a polymer coat-

ing are fairly recent due to the high computational overhead

involved in simulating them. Recent numerical investiga-

tions [124, 128] have been able to reproduce the scaling

predictions of Harden et al. [131] for grafted polymer coat-

ings using coarse-grained MD simulations. These studies

looked in particular at the case when the polymer coating is

thicker than the Debye length and looked at two regimes:

the mushroom (isolated chains) and brush (high grafting

density). In both regimes the MD simulations were able to

confirm some of the predicted scaling behaviours of the

bulk EOF with respect to the properties of the polymer layer

such as the scaling with respect to the degree of poly-

merization N and grafting density. The dashed line in Fig. 4

shows a simulation where a polymer coating of length

N 5 20 beads and grafting density of 0:05s�2 is used (here s
is the bead size in the WCA potential, Eq. (4)). Even these

relatively short polymers clearly quench the majority of the

EOF in the bulk of the fluid (note that in experiments the

thin region near the wall where flow is generated makes up

only a very small fraction of the total system size). Simula-

tions by Qiao and He [132] using the DPD algorithm

investigated the same situation showing interesting non-

linearities in the EOF due to dynamic coupling between the

polymer’s conformation and the fluid velocity profile. The

simulations also confirmed the fluid velocity profile as a

function of the distance from the wall for a quenched

polymer brush.

More detailed atomistic simulations by Qiao [133] have

shown that for cases where the Debye layer is on the same

scale as the polymer layer more complex behaviour can

result. They found that at low grafting densities hydrophilic

polymer coatings can actually increase the thickness of the

Debye layer and thus the potential difference between the

wall and the bulk fluid (termed the zeta potential) which

increases the bulk EOF. This effect was attributed to a

reduction in the amount of water in the region of the

polymer layer, which caused the counterions to move

further from the surface. At higher grafting densities, a

larger suppression of EOF as the friction between the

polymers and the fluid becomes larger was shown.

3.2 Free-flow electrophoresis

Free-flow electrophoresis is widely used to separate and

characterize biomolecules. When a polyelectrolyte in gel-free

solution is subject to a constant electric field, its average drift

velocity depends not only on the applied field but also on

interactions between the polyelectrolyte, the counterions

and the solvent. Because the interrelation between the

different forces is quite complex, free-solution electrophor-

esis is not easily accessible to complete analytical treat-

ments. Results do exist for long-chain limits where certain

simplifications are applicable [134–136] but experimental

evidence indicates that these models are not sufficient to

explain the behaviour of short chains [137–139].

In the schematic of the free-solution electrophoresis of

flexible polyelectrolytes (Fig. 5), we see that the mobility is a

function of length that approaches a constant with increased

chain length so that separation of longer macromolecules by

electrophoresis is not possible. This limit, called the free

draining regime, is well described by analytical methods

[134–136].

The behaviour of short chains, exhibiting not only

length dependence but a non-monotonic behaviour in the

transition from oligomers to long flexible chains, is not

adequately described by current theoretical approaches.

Here, modern simulation methods introduced in Section 2

provide much insight. The ability to coarse-grain certain

interactions more than others facilitates probing different

aspects of the behaviour one at a time.

In particular, fully atomistic MD (Section 2.1) can look

at small oligomers, thereby focusing on chemical details,

and has been employed to accurately describe the dynamic

behaviour of short (3 and 6 units) fragments of ssRNA [140].

The diffusion coefficient (corrected for finite-size effects
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[141] and solvent viscosity) and the increase in electro-

phoretic mobility from 3 to 6 nucleotides are consistent with

experimental results. The simulations show the importance

of the counterions in reducing the effective charge by tran-

siently binding to the polyelectrolyte resulting in the

sublinear increase in the mobility with chain length that we

see in Fig. 5. The fact that the mobility follows the increase

in effective charge demonstrates how the hydrodynamic

friction of short, rod-like polyelectrolytes depends only

weakly on the length of the chain.

Longer-chain behaviour can be understood only by

investigating the hydrodynamics of polyelectrolytes under-

going conformational changes from a rod-like to a globular

state. As the number of counterions bound to the polyelec-

trolyte increases with length, in this midlength regime their

contribution remains essential. Two recent studies using

mesoscopic techniques (SRD (Section 2.3.2) and LB (Section

2.3.3)) have investigated the transition region between short

fragments and long chains in detail [142, 143]. They show

that without HI, mobility would actually decrease with

length and approach a constant value for large molecular

weights. However, by including HI, simulations accurately

reproduce the experimentally observed non-monotonic

behaviour of the mobility. By determining the effective

charge, estimates of the effective friction were determined,

and a transition from logarithmic to linear scaling with

length was observed [144]. The microscopic interpretation of

this phenomenon is still being discussed, but all of these

studies [142–144] emphasized the importance of the inter-

play between HI and counterion condensation. This change

is attributed to the correlated movement of the counterions

in the vicinity of the polyelectrolyte, effectively cancelling

long-range HI this signals the transition to a free draining

regime.

When the chain length is increased further, screening

eliminates the need to explicitly account for hydrodynamic

effects. In this case, implicit fluid techniques without

hydrodynamics (Section 2.4) but with explicitly included

counterions have been applied to study polyelectrolytes in

electric fields, showing that below a critical field strength the

static and dynamic properties of the polyelectrolyte remain

unaffected and continue to agree with experimental data.

However, when using high electric field strengths that

exceed the fields in experiments by several orders of

magnitude, alignment of the polyelectrolyte with the field

and an increased electrophoretic mobility due to dissociation

of counterions is observed [145, 146]. Whether these effects

are of any practical relevance is not clear.

The above works emphasize the importance of correla-

tions between counterions, the polyelectrolyte and the

resulting screening of HI. Unlike the electrophoretic

motion, the diffusive motion of the polyelectrolyte is not

correlated with counterion motion and HI remain

unscreened [143, 147]. It has been shown that the diffusion

of long polyelectrolytes can be correctly modelled when the

counterions are neglected as long as hydrodynamic effects

are included [148]. In this simulation, the Rotne–Prager–

Yamakawa formulation (Section 2.4.2) was used to quanti-

tatively predict equilibrium and non-equilibrium diffusivity

of DNA molecules up to 126 mm in length.

3.3 Polymer-obstacle collisions

In many electrophoretic methods, size selectivity is due to

the interaction between the analyte and obstacles of some

sort. To better understand this interaction, Deutsch and

Madden [149, 150] have done pioneering 2-D BD simula-

tions of a polymer migrating through an ordered matrix of

obstacles. These authors found that in a very strong field,

the polymer migrated through the gel in an unexpected

fashion, very different from the conventional reptation

picture [103]. The chain goes periodically through a

sequence of states: a coil collides with a post, extends its

arms around it, slides off the post leaving it in a fully

extended state, and then collapses into a coil again. This

process, termed geometration, was later observed in

videomicroscopy experiments [151, 152]. Collision with a

post is an important part of geometration; obviously, this

process can be studied computationally in more detail if a

system with just a single obstacle is considered.

Nixon and Slater [153] did the first such computational

study using the BD approach in 2-D. They considered a

chain of beads (without excluded volume) connected by

FENE-like springs inside a narrow channel with an obstacle.

The field was assumed to be uniform, i.e. the field lines

penetrate the obstacle. The chain started in the random coil

state. As the collision begins, the coil gets deformed and

becomes pancake-shaped. The subsequent behaviour of the

polymer is similar to that observed by Deutsch and Madden,

but more clearly seen, as other neighbouring obstacles do

not interfere. Based on these simulations, the authors

developed an analytical theory predicting both the average

Figure 5. Schematic of the dependence of the electrophoretic
mobility on the length of a flexible polyelectrolyte in free
solution. Short rod-like oligomers show a sublinear increase in
electrophoretic mobility with chain length. The mobility
approaches a constant for long globular chains in the free
draining regime. Between these two behaviours lies a transition
region in which both counterion and hydrodynamic effects must
be accounted for.
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retardation of the polymer due to the collision and the

variance of this retardation.

More detailed simulation studies of collisions using a

very similar 2-D BD approach were carried out by Sevick and

Williams [154] and Saville and Sevick [155]. The latter

studied the properties of collisions as a function of the

impact parameter, the initial distance in the direction

perpendicular to the field between the centre of mass of the

chain and the centre of the obstacle. Different obstacle sizes

were also considered. These authors found that besides the

‘‘hooking’’ collisions studied by Nixon and Slater, another

possibility is the ‘‘rolling off’’ collisions where the coil ‘‘rolls

over’’ the surface of the obstacle and does not deform much

during the collision (Fig. 6). For ‘‘rolling off’’ collisions that

become dominant for large obstacles, the duration of the

collision depends mostly on the obstacle size, rather than

the chain length. Among ‘‘hooking’’ collisions, besides the

conventional type (called U/J collisions, because the hooked

chain conformation resembles these letters), collisions with

multiple hooking (later termed W collisions [156], as the

conformation can resemble a ‘‘double-U’’) were also found.

More recently, Randall and Doyle [157] found in their

fluorescence microscopy experiments that besides U/J and

W collisions, yet another type of collision (called X for

‘‘extending’’) is possible. These collisions resemble the U/J

type, but the longer arm of the chain is not fully unwound at

the beginning of the unhooking process, containing a coil at

the end that unwinds gradually as the unhooking proceeds.

To study this collision type in detail, Kim and Doyle [158]

carried out 3-D BD simulations with excluded volume

interactions. Unlike previous work, they did not make the

assumption of a uniform electric field, instead calculating

the field assuming that the obstacle (cylindrical in shape) is

a perfect insulator. They indeed found X collisions, along

with previously known U/J and W types. It turned out that,

surprisingly, the X type is the most dominant one in a broad

range of chain lengths and field strengths. Given that this

remains the case even in simpler models, perhaps previous

authors simply did not distinguish between completely and

incompletely unwound chains (for instance, [153] did not

distinguish between these states).

The work discussed so far deals with the case of strong

fields, when the thermal effects are negligible or at least

secondary. A very recent paper by Holleran and Larson [159]

also considers the case when, on the contrary, the field is

weak and thermal diffusion dominates. In this case the arms

are never extended and the polymer remains a coil that drifts

slowly past the obstacle. In fact, in this regime the polymer,

at least semi-quantitatively, can be considered as a rigid

particle and be studied using, e.g. the exact MC methods

described in Section 2.6.1. The paper is also interesting

because of its use of a novel computational model of the

chain (developed by the authors and described in a separate

publication [160]), where the springs connecting the beads

and not the beads themselves are repelled by the obstacles,

which ensures that the chain cannot penetrate the obstacle

even when the distance between the beads is much larger

than the obstacle size. This allows the authors to treat very

long chains (longer than 1000 Kuhn lengths).

All simulations discussed so far used BD neglecting

Coulomb interactions between monomers and HI. Coulomb

interactions are screened by counterions. The justification

for neglecting HI offered by Kim and Doyle [158] is that both

their simulation and the experiment it models [157] were

carried out in a slit, in which case HI should be screened.

However, even in the bulk the results are at least qualita-

tively correct, as the comparison with recent simulations by

Kenward and Slater [161] using explicit solvent shows.

Introducing a solvent can certainly produce some quantita-

tive changes. Neglecting HI assumes that the polymer is

free-draining, which is true in free solvent, but not when the

chain is slowed down by an obstacle. The result is the

modification of the friction force on the chain, which also

becomes conformation-dependent. Kenward and Slater also

studied collisions between two polymer chains, of which

only one is driven by an external force, but both are mobile.

Such collisions are important in the case of electrophoresis

in polymer solutions [162, 163]. In this case, hydrodynamic

effects influence the conformations of the chains. Similarly,

studying situations where the colliding chain is driven by a

flow, rather than an external field, is, of course, possible only

when the solvent is included in some way; Kenward and

Slater considered this case as well.

Finally, we mention other computational approaches

applied to this problem. Starkweather et al. did off-lattice

bead–rod MC simulations of a chain colliding with an

immobile random coil [164] and a mobile chain [165]. As

mentioned MC methods often have problems in strong

fields, and their use is especially dangerous when applied to

this problem, as it involves U-shaped chain configurations.

The authors had to restrict themselves to moderate field

Figure 6. Different types of collisions of a chain with an obstacle:
a collision involving hooking of the chain upon the obstacle (left)
and a ‘‘rolling off’’ collision during which the chain remains a
coil (right).
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strengths, when the chain is far from being fully stretched.

André et al. [156] used a special algorithm tracking the

evolution of different loops and arms of the chain after the

impact.

3.4 Ogston: Modeling sieving in hydrogels

A specific electrophoretic regime exists when the size of the

analyte is smaller than or comparable to the mean pore size

of the gel. This regime is often called the Ogston regime for

electrophoretic sieving. Although the concept is technically

restricted to rigid analytes, it is possible to extend its use to

flexible polyelectrolytes such as DNA if one assumes that the

chain takes on a spherical conformation with an effective

radius R. By coarse-graining out the fine details of the

individual monomers and considering the analyte as a solid

sphere, we can discretize our system on a lattice (Fig. 7) and

use simulations or exact calculation methods to study the

electrophoretic mobility or diffusion coefficient of the

analyte in this regime. A straightforward lattice approach

to modeling the gel system would be to consider a gel fibre

as an impenetrable obstacle. In Fig. 7, the analyte and the

obstacles are of the same size (the lattice step size); although

this is the case that we will consider below, it is equally easy

to study larger obstacles and/or larger analytes that occupy

more than one lattice unit (more on this later).

The first such numerical model was used by Slater and

Guo [166] to test the key hypothesis of the Ogston–Mor-

ris–Rodbard–Chrambach (OMRC) model. According to the

OMRC model, the mobility of the analyte in this regime is

linearly proportional to the fractional gel volume that it can

occupy, a purely geometric parameter that can be computed

quite easily for the model shown in Fig. 7. All the other

assumptions of the OMRC model (e.g. a low field intensity)

being compatible with the numerical model, the results of

the study represented a direct test of the fractional volume

hypothesis. The Slater and Guo exact numerical calculations

showed that the mobility of the analyte is higher in an

ordered gel, compared with a random one, even if the

fractional volume is the same. This was the first demon-

stration that the OMRC model is incomplete; in fact, these

authors also showed that the OMRC model corresponds to a

mean-field model valid for an annealed gel (a gel with

rapidly moving obstacles) [166].

As mentioned earlier, it is possible to extend the exact

method to treat larger particles [167]. In this case, molecules

are also viewed as rigid spherical particles, but can be larger

than the obstacles. These results are valid in the zero-field

limit since the interactions with the obstacles are assumed

to be hard-core, i.e. the particles do not deform when

colliding with an obstacle. It is also possible to extend this

calculation method to treat attractive interactions between

the analyte and the gel structure [168].

DNA molecules can also be modelled using the MC

exact calculation method without making the hard sphere

approximation [121]. Indeed, one can use multiple particles

linked by bonds to represent a flexible chain. For example,

such polymers can be described by self-avoiding walks and

modelled by the BFA. This extension opens the door to a

fundamental study of the electrophoretic sieving of oligo-

mers, rod-like molecules, vesicles, star-shaped macro-

molecules, etc. One could argue that the MC exact

calculation model is not a sufficiently good representation of

a gel matrix since the field is assumed to be uniform

throughout the gel. In reality, the field lines are affected by

the gel structure (the obstacles). It has been shown [169] that

the LMC exact method can also be extended to treat spatial

variations of the electric field, and that this has little impact

on the results at low field intensity.

It is possible to apply the exact method to treat high

fields instead of vanishingly small external fields [105]. For

non-deformable analytes, this can reproduce the trapping

that sometimes occurs in real electrophoresis experiments.

Multiple obstacle geometries have been studied and it is

possible to properly model experimental observations of

trapping and pulsed field de-trapping. A modified version of

the initial algorithm [170] also allows the simultaneous

calculation of the mobility and of the dispersion coefficient;

this is obviously needed in order to predict the resolution of

a specific device.

3.5 Microfluidic ratchets

The Brownian motion of particles is what gives rise to

diffusion. It is possible to exploit these natural thermo-

dynamic fluctuations for the separation of particles by

adding an external force that biases the dynamics. Brownian

ratchets are devices that use an asymmetry, either temporal

or spatial, to drive the motion of a Brownian particle even

when the net external force is zero. For example, a temporal

asymmetry could be a zero-mean field alternating between a

short high-intensity forward pulse and a longer low-intensity

backward pulse. A spatial asymmetry could take the form of

asymmetrically shaped obstacles or walls. Using any or all of

these types of asymmetry, a non-zero net velocity can be

observed in the presence of a field even if the net force is

zero (hence the name ratchet). The random motion of the
Figure 7. Modeling a polyelectrolyte in the Ogston regime with
an LMC model.
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particle then plays a major role (this is why it is called a

Brownian ratchet).
As an example, consider the case of particles in a

properly designed microfabricated array of obstacles (see

Fig. 8). LMC methods can be used to simulate Brownian

ratchets of this kind (see Section 2.6.1.1). First, the system is

represented as an array of impenetrable obstacles. A starting

point is chosen and the particle is moved randomly with the

probabilities defined in Eq. (16). With this method, long

computational times would be required in order to obtain

statistically precise results. A faster and more precise

computational method was described in Section 2.6.1.1 The

increased accuracy is vital at very low fields, where the

statistical uncertainty associated with the normal approach

is often larger than the studied behaviour.

Gauthier and Slater [171] examined several ratchet

systems using this simulation approach. The system shown

on the right-hand side of Fig. 8 is interesting since it uses a

symmetric array of obstacles together with an asymmetric

pulsed field. These authors observed several current reversals

(changes in direction) for different values of the field. For

certain choices of parameters, particles of different sizes but

having the same charge were predicted to move in opposite

directions, a remarkable result (in some cases, a particle can

even move against the direction of the net field, a phenom-

enon called absolute negative mobility). A Brownian ratchet of

this type was later built experimentally by another group [172].

An aqueous solution of charged spheres of radius 2 mm was

placed in a periodic array of misaligned posts with alternating

small and large gaps. The applied asymmetric external field

was a superposition of a constant (EDC) and an alternating

signal (�EAC). The system behaved as expected and absolute

negative mobility was observed – a nice example of the kind of

new ideas that simulations can suggest.

Tessier et al. [173, 174] studied the system proposed by

Han et al. [175] in the ratchet regime, both spatial and

temporal. For the spatial asymmetry, the system was

modified to introduce a geometrical asymmetry. The BFA

(see Section 2.6) was used to model the polymer. Tessier et
al. also simulated the system using a zero integrated pulsed

field [176]. In both cases, separation was predicted. These

predictions have yet to be tested.

3.6 Nanopore translocation

By threading ssDNA through a narrow pore (Fig. 9) and

identifying the bases as they pass through, nanopores offer a

promising avenue for the development of sequencing

technologies [177]. In contrast to gel electrophoresis,

nanopore sequencing could offer rapid (thousands of bases

per second) sequencing of a single DNA molecule; a

revolution which would have a great impact in fields

associated with the life sciences. The same approach can

also be used for other purposes, such as sizing molecular

contour lengths. A significant advancement occurred in

1996 when Kasianowicz et al. demonstrated that RNA and

DNA could be detected passing through a biological

nanopore (a-haemolysin) by monitoring the disruption of

ionic currents [178]. Subsequently, there have been a great

number of theoretical [179–182] and experimental studies

[183–188] focused on nanopore translocation (note that the

number of nanopore related publications is staggering and

in this very brief review, we are limited to providing only a

few selected publications for each topic). Providing a bridge

between theory and experiment, many computer simula-

tions have also been performed and, in fact, most of the

techniques discussed in Section 2 have been used to study

the translocation process.

At the coarsest level, LMC simulations (see Section 2.6.2)

are often performed in conjunction with theoretical studies to

test the resulting predictions [181, 182, 189–193]. Other

studies have used off-lattice MC to study translocation driven

by an external or adsorption force [194–196]. Finally, one

approach has mapped the translocation onto a 1-D diffusion

process and then employed an exact numerical technique to

obtain results [122, 197]. Although such studies are able to

investigate very long polymers at low fields, the details of the

dynamics are not produced and, additionally, the model is

coarse to the extent that effects such as HI can be included

only in an approximate manner. At the opposite end of the

spectrum, fully atomistic MD simulations of DNA inside a

channel have also been performed. These studies have

revealed interesting details about the viability of distinguish-

ing between bases of DNA translocating through a synthetic

nanopore [1] and the dependence of various quantities on the

DNA orientation inside the biological a-haemolysin channel

[198]. They are, however, limited in terms of time scale and

are unable to simulate the full translocation process. In

between these extremes, many coarse-grained MD simula-

tions using an implicit fluid [199–201], an explicit fluid

Figure 8. Three types of obstacles that can be used to design a
Brownian ratchet separation system. Left, top: trap-shaped
obstacles with a left-right spatial asymmetry. An unbiased AC
electric field would lead to a net velocity pointing in the negative
x direction. Left, bottom: symmetric obstacles with traps in both
directions. Here, one would need an asymmetric pulsed field to
drive the Brownian ratchet. Right: the distribution of obstacles
proposed by Gauthier and Slater [171]: misaligned rows of
obstacles. The lattices are not explicitly shown for clarity purpose.
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[202–204], or a mesoscopic fluid model [205–208] have been

performed in an attempt to include the critical factors while

requiring a reasonable level of computational power.

Using one or more these approaches, these studies have

investigated the role of underlying physical mechanisms such

as conformational entropy [197], HI [205], the solvent effect

[209], counterions [204], pore-polymer interactions [210], and

the pore geometry [211, 203]. Additionally, the dependence

on the nature of the polymer has been studied by simulat-

ing charged polymers [212] and heteropolymers [213, 214].

Furthermore, considering application to sequencing, it is not

surprising that a great number of studies have also examined

driven translocation by implementing a pulling force [215], an

adsorption force [196], or an external field (discussed below).

As is obvious from this list, which is in itself incomplete,

there is not enough space in this brief review to cover all of

these results. Rather, as a single example, we will discuss

some of the results for a key aspect of the general translo-

cation problem: the scaling of the translocation time t with

the degree of polymerization N of the polymer for driven

translocation.

In experiments on the biological a-haemolysin pore,

both Kasianowicz et al. and Meller et al. found a linear

dependence of the translocation time on the polymer length

(t � N) for short ssDNA fragments [178, 188]. In contrast,

the experiments of Storm et al. found a scaling of t � N1:27

when driving long DNA strands (6500–97000 base pairs)

through a solid-state nanopore [183]. This result is in

agreement with their prediction that t � N2n for long poly-

mers when HI are taken into account (n ffi 3=5 is the 3-D

Flory exponent). From the analytical side, considering

translocation driven by a chemical potential gradient,

Muthukumar predicted linear scaling [189] while Kantor

and Kardar predicted t � N1þn [191]. The latter group also

performed bond-fluctuation MC simulations but were

unable to verify the prediction due to limited polymer

lengths. However, additional simulation studies for long

polymers have found a scaling of t � N1þn using 2-D fluc-

tuating bond MC [216] and using the exact numerical

method [197]. Finally, Dubbeldam et al. predicted a scaling

of t � N2=ð2nþ2�g1Þ (where g1 is the surface exponent) [217]

and found results consistent with this from off-lattice MC

simulations. Moving towards a more detailed simulation

of the dynamics, driven translocation has also been studied

using LD and BD simulations. Performing 2-D LD

simulations, one study found a scaling of t � N1þn [201] – a

result consistent with the Kantor and Kardar prediction and

the MC simulations cited above. Meanwhile, others

have found a linear dependence [199, 200]. The discre-

pancies between these results may be attributed to differ-

ences in the particular system setups such as the pore

length, polymer length, magnitude of the external field, and

polymer model.

A limitation of all the simulation results cited thus far

(MC and LD/BD) is that they neglect HI. As long ranged

correlations through the fluid are conceivably important in

the translocation process, much of the current work focuses

on MD simulations using mesoscopic fluid models. Using

the DPD approach, He et al. have found a linear dependence

of t on N [207]. Meanwhile, Izmitli et al. [205] and Fyta et al.
[206], each using an LB fluid model but with different

polymer models, have both found an exponent of 1.28, a

result in good agreement with the experimental data of

Storm et al. corresponding to t � N2n. Both of these studies

also directly tested the impact of HI by performing the same

simulations without the LB solvent. Izmitli et al. found a

negligible change as the exponent rose to 1.31 while Fyta

et al. observed a slightly larger effect with the exponent

rising to 1.36. The key parameter here appears to be the

molecular size: is there a critical polymer size below which

the HI are negligible because the translocation is then

dominated by the polymer-pore interaction and not by the

polymer-fluid interaction? In our opinion, a combination of

careful simulations and experimental studies will be needed

to answer this question.

As demonstrated by this one example, a wide range of

simulation techniques have been employed to elucidate

various details of the translocation process. In fact, given this

wide array, one must keep in mind the scope of a particular

simulation approach and the limitations of a chosen system

setup when considering the results of each study. Ultimately,

however, this diverse amount of information is an advantage

in fully characterizing the system. While there are still many

hurdles remaining before a nanopore sequencing device is

realized (the development of a base identifying detector,

slowing down the overall process, having the DNA find the

pore), current simulations are giving insight on the funda-

mentals of polymer translocation.

3.7 Entropic trapping

In Ogston-type models of electrophoresis, it is assumed that

analytes cannot pass through constrictions that are smaller

Figure 9. Schematic of a polymer translocating through a solid-
state nanopore.
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than their diameter. This is true for hard particles, but

polymer coils can deform and still pass through holes that

are much smaller than their radius of gyration Rg. However,

as deformed coils are no longer completely random, this has

an entropy cost and a polymer entering a narrow space has

to overcome an entropic barrier. In a porous medium, such

as a gel, such barriers are especially important when the

average pore size is comparable to Rg so that there are pores

both smaller and larger than Rg. In this situation, entropic
trapping is possible, in which case the polymer can stay

trapped for a long time in a large pore, since all ways out of

it involve overcoming entropic barriers. The consequences

of this were first studied in off-lattice MC simulations

(Section 2.6.2) by Baumgärtner and Muthukumar [218–220];

one interesting result is a much stronger size dependence of

the diffusion coefficient (and thus, via the Nernst–Einstein

relation (Section 2.6.1), of the electrophoretic mobility)

than predicted for larger polymers spanning many

pores (the reptation regime). This was later confirmed

experimentally [221].

Entropic trapping in gels, while an important issue, is

still just one of the factors influencing the separation. On

the other hand, Han et al. [124, 175, 222, 223] have fabri-

cated and studied a device where, by design, entropic trap-

ping is the dominant contribution to separation. The device

is an array of cavities separated by long and narrow slits. The

size of the cavities is much larger than Rg for the typical

DNA sizes whose separation is desired, whereas the width of

the slit is much smaller than Rg in one direction, but,

importantly, is still � Rg in the other direction. Han et al.
found that the mobility increases as the size of the polymer

increases. This is rather counterintuitive, given that larger

polymers should deform more passing through the slit and

this should be more entropically costly. Han et al. explained

this by suggesting that rather than entering the slit as a

whole, the polymer stays around the slit and loops (or

hernias) get inserted in the slit (Fig. 10). Such insertion has

an entropy cost proportional to the insertion length, but it

also causes the decrease of the electrostatic energy propor-

tional to the square of the length. As a result, the free energy

increases until the top of the free energy barrier is reached,

but then starts decreasing. The escape rate, as always in

transition-state theory, depends exponentially on the barrier

height, but also depends on the prefactor (the attempt

frequency). It was argued that the barrier height is inversely

proportional to the field strength, but is independent of the

polymer size, and so the separation is entirely determined

by the prefactor. This prefactor should be proportional to the

size of the part of the polymer exposed to the slit, as this

determines the number of hernias that can form simulta-

neously; this size is proportional to Rg which increases with

the polymer size, and therefore the escape rate indeed

increases with the size, as observed experimentally.

This simple theory, while appealing, was in need of

verification by simulations, especially given that it relied on

the independence of the free energy barrier height of the

polymer size; since this barrier height enters in the exponent,

even a slight dependence may completely overwhelm the

dependence contained in the prefactor. With this in mind,

several simulations have been carried out. Tessier et al. [173]

used the MC BFA (Section 2.6.2.3). The field used in the

simulation was computed by numerically solving the Laplace

equation. The results for the mobility obtained in the simu-

lations are in qualitative agreement with the experiments.

Overall, the simulations confirmed the theory by Han et al.,
but also further refined it. In particular, it was found that for

weaker fields the mean trapping time indeed depends expo-

nentially on the inverse field with the slope on the semi-

logarithmic plot independent of the molecular size, confirm-

ing that the activation energy is indeed size-independent. On

the other hand, for longer chains there was a deviation from

the perfect exponential at higher fields attributed to the

change in the shape of the coil near the entrance to the slit. At

moderate fields the coil around the slit acquires a pancake

shape and the radius of gyration behaves as that of a 2-D
random walk; but as the field gets stronger, the escape into the

slit is so fast that the coil has no time to deform. This has

obvious consequences for the escape rate, as the prefactor

depends on the extent of the coil along the slit entrance. The

field dependence of the critical hernia length, as estimated by

Tessier et al., is also largely in agreement with the theory.

Chen and Escobedo [224] looked more directly at the free

energy barrier associated with the entrance into the slit. Since

free energy calculations are done in equilibrium, one of the

equilibrium MC methods (in their case, configuration-bias

MC [225]) was used (see Section 2.6). The advantage of this

approach is that reliable results can be obtained even for very

small fields, when the escape is so slow that good statistics

cannot be obtained in dynamical simulations. The result of

these free energy calculations is that over a large range of

parameters, the barrier height is indeed polymer-size-inde-

pendent, however, deviations are observed at very low fields

for very short chains (the regime that Tessier et al. could not

study very carefully). These deviations are not unexpected: at

very low fields, the critical hernia length is very large, and if

the chain is short, may actually become comparable to or

even (in theory) exceed the chain length.

Streek et al. [226] used BD simulations (Section 2.4)

to study essentially the same system. Based on their

results, these authors suggest that in addition to entropic

trapping, there exists another separation mechanism, due to

size-dependent trapping of chains in the corners of the

Figure 10. Schematic drawing of a part of the entropic trap
device of Han et al. with a DNA chain near the entrance to a
narrow slit. Several hernias are inserted in the slit.
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cavity. The authors claim that it is this new mechanism,

rather than entropic trapping, that is dominant. This may

well be true at the rather high fields that they consider and

especially in the case of constrictions that are wider than the

radius of gyration of the chain (considered in a separate

publication [227]), when the entropic barriers are essentially

negligible. On the other hand, it is clear that at very low

fields for narrow constrictions the entropic trapping

mechanism should dominate, as no mechanism based on

diffusion alone, without any activation barriers involved,

would be able to compete. The intermediate case, when the

entropic barrier height is � kBT , is the most interesting

practically and deserves further study; the answer may

depend on many details, such as the size of the cavities.

We should also mention newer work likewise using BD.

Panwar and Kumar [228] recognized that when the trapping

barrier is not very high, two other time scales besides the

trapping time contribute: the time it takes the DNA to

approach the constriction and the crossing time. They studied

the field and chain length dependencies of all three times.

These authors used a bead-rod model of the DNA; Lee and

Joo [229] did a similar study for a bead–spring chain.

All work described here uses methods that do not take

hydrodynamic effects into account. For this reason, the DNA

behaves as a free-draining chain when in reality a trapped

chain is not free-draining. As Tessier et al. [173] point out, this

implies that the field intensity needed to overcome the

entropic barrier is underestimated by a factor of � N2=5,

where N is the chain length. As always at this level of

modeling, quantitative comparisons with experiment are

difficult, because the effective charge of the DNA is different

from the bare charge due to counterion condensation. These

effects need to be taken into account in future work.

3.8 Surface electrophoresis

A novel electrophoretic separation technique based on the

DNA’s interaction with a surface was first reported by

Pernodet et al. [230] in 2000. By adsorbing DNA to a surface,

length dependent separation on a flat surface without any

restrictions or any sieving matrices was achieved (see

Fig. 11A). It was found that the interactions between the

molecule and the substrate essentially act as a length

dependent source of friction, enabling electrophoretic

separation. The initial experimental observations were

accompanied by MD simulations [231, 232] and have been

followed up by further studies [233, 234] under different

conditions. The results showed that the DNA-surface

interaction is a key parameter for the process: a strong

attraction leaves the molecules fully adsorbed and no

separation is possible, too weak an attraction lets molecules

desorb and resume bulk behaviour, where likewise no

separation is possible. Additionally, the interaction can be

noticeably influenced by choosing a specially patterned

surface [235, 236], an exciting and unique approach to

designing optimized and custom-made separation systems.

Since the exact nature of the interaction and the

resulting separation mechanism remain elusive at this

point, there is a pressing need for more elaborate theoretical

and computational studies that include electrostatic

and hydrodynamic effects alike as they are crucial when

the molecules approach the surface. This has been neglected

so far.

3.9 Confinement-driven separation

Recent progress in design and fabrication of microfluidic

devices on a sub-micrometer length-scale [237–239]

demands a good understanding of the statics and dynamics

of the polyelectrolytes under steric confinement. We can

distinguish several regimes of confinement. In a device that

is much larger than the size of the polyelectrolytes, given by

their radius of gyration Rg, the conformations are unper-

turbed and isotropic (weak confinement). Reducing the

dimensions of the devices to the order of Rg, the

conformations of the polyelectrolytes start to become

restricted by the walls and show deviations from the

equilibrium (strong confinement, see Fig. 11B). With

further reduction of the device size, the polyelectrolyte

becomes extremely restricted and the static and dynamic

properties undergo significant changes [240, 241] (Fig. 11C).

The decrease in size of microfluidic devices used in

actual experiments and the growth in size of the systems

that are addressable by means of computer simulations –

due to advancement of simulation methods together with

the increase of computer power – led to a cross-over creating

systems that can be worked on from both sides. Recent

experiments in slit-like nanochannels studied the static and

dynamic properties of single molecules [242–248] and

showed how confinement can be used as a tool to change

polymer conformations as well as the dynamics through
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Figure 11. Different regimes of confinement used in some gel-
free separation techniques: (A) weak confinement (d42Rg) in
the presence of an attractive surface, (B) stronger confinement
(d � 2Rg) that starts to influence the chain conformations, and
(C) strong confinement (do2Rg) in which the chain conforma-
tions are determined by the walls of the channels.

Electrophoresis 2009, 30, 792–818810 G. W. Slater et al.

& 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com



modulation of the HI. Consequently, the role of hydro-

dynamics in confinement has been the focus of several

recent computer studies [75, 96, 248–254]. The results

indicate that, under weak confinement, the HI between

polymer and wall drive the polymer to the centre of the

channel if an external flow is applied. However, in high

confinement, a migration towards the channel walls was

observed. Since this interesting physical phenomenon

depends on the ratio of the size of the polymer to the width

of the channel as well as on the strength of the driving force,

it seems to be an ideal candidate for free-solution separation

of polyelectrolytes. Recently reported measurements on the

diffusion and the electrophoretic mobility of DNA in

strongly confined systems [255–257] indicate a possible

electrophoretic separation mechanism based on the modi-

fied dynamics in strong confinement. A systematic simula-

tion study of this subject has yet to be done in order to verify

these results. In particular, electrostatic interactions and the

influence of counterions on the HI have been neglected so

far, but they should be assumed to be of great importance if

the length scales of the system become comparable to the

Debye length, below which electrostatic interactions are not

fully shielded by the solvent [258, 254].

4 Outlook

This review has hopefully convinced the reader that the

computational approach has been useful in understanding a

large variety of electrophoretic separation systems and

relevant electrokinetic phenomena. Compared with theory,

many situations that cannot be studied theoretically without

gross simplifications can be treated computationally; in fact,

simulations provide valuable clues to theorists as to exactly
what simplifications and assumptions they are allowed to

make. Compared with experiments, simulations have an

unmatched ability to look at the microscopic level; but

perhaps the most important is the possibility to ‘‘switch on

and off’’ different effects (such as HI) at will, something that

is not available to experimentalists and yet is extremely

helpful in developing a better understanding of the systems

and phenomena of interest.

Considering the future of both the simulation methods

and their applications to separation phenomena, the most

straightforward approach is the ‘‘brute-force’’ one: harnes-

sing the inevitable increases in computational power to

conduct more detailed simulations of larger systems for

longer times. However, in striving for more realistic simu-

lations in this manner, it is important to recognize just how

wide the gulf between experiments and detailed simulations

is. To see this, consider atomistic MD simulations that are

already being used to study DNA inside a nanopore (Section

3.6). While these simulations are yielding interesting

results, significant increases in computational power would

greatly enhance what they are able to study. For example,

detailed atomistic simulations may be able to aid in the

design of a probe to read the bases as they pass through the

channel. However, current atomistic MD simulations are

typically limited to trajectories of hundreds of nanoseconds

for limited system sizes. On the other hand, in the lab, the

dynamics of interest can evolve on a time scale up to

seconds or even longer. Consequently, while any increase in

computational power is enthusiastically welcomed, the gap

between detailed simulation and experiment remains large

and the development of efficient techniques to appropriately

coarse-grain the simulations is equally vital to broadening

the scope and relevancy of computational studies.

Hence, as a final thought to this review, we examine a

number of emerging or long-standing-but-difficult areas

where new ideas and computer simulations will be needed

over the next few years.

4.1 Multiscale simulations

In simulations, often different regions of the system require

different levels of detail. For instance, a molecular-level fluid

model may be required in the vicinity of the analyte, but at

larger distances a faster mesoscopic approach may be

sufficient. Likewise, the accuracy of a translocation simula-

tion may be improved if the polymer is simulated

atomistically in the vicinity of the nanopore. To avoid

simulating the whole system with the highest level of detail

needed only in a small region, multiscale simulations can be

used. The biggest challenge is the seamless coupling

between regions with different level of detail, which is

especially difficult if the region boundaries are required to

move. Several multiscale methods for fluids have appeared

recently (see [259–264]). Such methods should see increased

use in electrophoresis simulations. Besides, more ‘‘trivial’’

serial multiscale studies, where the outcome of a more

detailed simulation is used to construct a coarse-grained

model and vice versa [265], will be useful.

4.2 Mesoscopic solvents

SRD is a relatively new method of mesoscopically handling

solvents and as such its full potential has yet to be captured.

Despite being a model that is conceptually and relatively

simple to implement, few of the electrophoretic simulation

examples discussed above have taken advantage of SRD’s

ability to treat relatively large and multicomponent systems

with complex and dynamic boundary conditions. Further-

more, careful choice of the multiparticle collision operator

allows for hydrodynamics to be ‘‘turned off’’ and simply

replaced with a Brownian heat bath in order to explore HI

effects in the system.

4.3 Hydrodynamic effects in gel electrophoresis

The separation of small analytes by gel electrophoresis is

often called ‘‘sieving’’. ‘‘Small’’ typically means that the size
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of the object is smaller than the mean pore size of the gel

matrix. The word sieving suggests that separation is related

to steric interactions restricting the motion of the analyte.

Although detailed obstruction models have been proposed,

their validity is not clear because they ignore HI and do not

properly treat electrostatic interactions. Since we have three

length scales here (the Debye length, the particle’s radius

and the mean pore size), many different regimes must exist.

Understanding the simultaneous screening of the electro-

static and HI in a sieving matrix, especially if the latter is an

entangled polymer solution, will require new ideas and

probably extensive coarse-grained MD simulations.

4.4 Electrophoresis in polymer solutions

Electrophoresis in capillaries and microchips using polymer

solutions as sieving matrices is increasingly important.

Conventional wisdom is that well-entangled polymer solu-

tions behave essentially like gels. However, the absence of

crosslinking may be important, especially in strong fields

typically used for capillary electrophoresis. Recent videomi-

croscopy experiments [266, 267] seem to suggest that the

DNA is able to drag matrix polymers even well above the

entanglement concentration. Simulations are needed to

help understand this process. The consequences for the

basic geometration mechanism of DNA motion can perhaps

be understood even in rather simple models similar to that

by Deutsch [149], but with ‘‘draggable’’ obstacles. Electro-

phoretic motion in more dilute solutions, around the critical

entanglement concentration, is of interest as well.

4.5 Drag-tags for free-solution separation

Attaching suitable molecules to DNA fragments can restore

size-dependent mobility regardless of the free-draining

property [268–270]. The read length is optimized by

choosing large but perfectly monodisperse drag-tags. As it

is an experimental challenge to produce such polymer

labels, two recently proposed alternatives seem promising:

Haynes et al. [271] proposed to use branched polymers with

well-defined architecture, whereas Grosser et al. [272, 273]

introduced non-ionic surfactant micelles as drag-tags with

very large hydrodynamic friction. Computer simulations can

be used to characterize these new labels and provide ideas

on how to extend these approaches.

4.6 EOF

As mentioned in Section 3.1, it has been shown that the

mesoscopic fluid models such as LB and DPD provide

realistic EOF profiles. It has also been shown that they

provide realistic HI. One would suspect that given that they

do these two things accurately, they will probably also be

able to model EOF in the presence of polymer coatings.

If this is the case, mesoscopic models could allow for the

simulation of more complex coatings and a wider range of

parameters due to the increase in speed of computation.

4.7 DNA denaturation

As a means of sequence dependent separation, denaturing

gradient gel electrophoresis exploits a rapid decrease in the

mobility of a dsDNA fragment when sections of it denature.

It is currently unclear whether the experimentally observed

blocking is an actual trapping or a steep reduction in

mobility. The bubble dynamics could play an important role

in the blocking, thus a static helical-coil configuration may or

may not be enough to give the correct picture. Unfortunately,

simulating accurate bubble dynamics sets a coarse graining

length scale to the length of a single base pair. A MD model

that could incorporate the correct ‘‘breathing’’ dynamics of a

dsDNA [274] in the presence of a gel while being able to treat

dsDNA lengths of interest could be an important tool for

investigating the blocking phenomenon.

4.8 Separation of large DNA

The idea of a Human Genome Project became realistic when

PFGE made it possible to separate DNA molecules as large as

a few megabase pairs (Mbp), a necessary step for chromosome

mapping and sample preparation. After a few years of rapid

progress, PFGE saturated at about 5 Mbp. Of course, the

physics of PFGE is expected to be complicated for molecules

that are millimeters in contour length! Agarose gels, with their

sub-mm pores, are probably not the best material to extend the

usefulness of PFGE. Recent ideas, based on new separation

concepts, have yet to become commercial products. Computer

simulations played a key role in the development of PFGE, and

will again be needed in order to optimize the separation of

such huge molecules and to design new and faster devices.

4.9 Protein separations

While the electrophoretic separation of nucleic acids, small

ions and spherical particles has been modelled extensively,

the same cannot be said of protein electrophoresis. Proteins

are complex molecules, with non-trivial charge distributions

on their surface. They can be separated in their native state

or denatured, in free-flow electrophoresis or in gels, under

uniform conditions or in the presence of gradients of

various kinds. Although some models developed for

particles or DNA can possibly be used for proteins as well,

this has never been carefully tested. Computer simulations

will be required to optimize the separation of proteins,

which remains a difficult issue in the laboratory. However,

generic simulation methods are not likely to work well since

the precise shape and charge distribution that characterize a

specific protein must be taken into account.
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In conclusion, as computers become more powerful and

new algorithms are developed, the future of computational

studies of separation phenomena looks even brighter!
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6 Appendix

MD simulation packages

While the theory behind an MD simulation is conceptually

straightforward, in practice it can be a large undertaking to

code from scratch. This is particularly true when one wishes

to implement more involved algorithms in order to

efficiently calculate long-ranged electrostatic interactions or

incorporate mesoscopic fluid models. For this reason, there

exists a multitude of simulation ‘‘packages’’ in which the

routines necessary for performing the simulation have

already been implemented. Hence, the user can simply

supply input information pertaining to their system, select

simulation features and parameters, and then use the

packages to execute the simulation, produce trajectory files,

and, frequently, perform analysis. Thus, to aid the interested

reader, we present in this appendix a table of the more

prominent MD simulation packages (note that the list given

here is by no means exhaustive; see, for example, the

Wikipedia article on MD at http://en.wikipedia.org/w/

index.php? title=Molecular_Dynamics&oldid=231786544).

In addition to providing the simulation package name

(and related references), we also include some details for

each package. The information given here is meant to

convey what the package is most often used for and also to

indicate any special features unique to this package. These

entries should not be interpreted as restrictive, but rather as

highlighting interesting or distinct features among a group

of software which all accomplish similar goals.

For example, consider delineating the packages between

‘‘atomistic’’ or ‘‘coarse-grained’’ simulations. In principle,

all the cited packages are capable of performing fully

atomistic simulations. But as such simulations require a

fully atomistic force field it is easiest to start with a package

that either comes with some force fields implemented

(the first four packages in the list) or, at least, is designed

to be compatible with the force fields from other packages

(the next two entries). Similarly, all of the packages

could be used for coarse-grained simulations. In fact, due to

its efficiency in calculating non-bonded interactions,

GROMACS, a biomolecule-oriented package, has been used

for coarse-grained polymer simulation work. However, in

choosing a more coarse-grained oriented package, one is

more likely to find other useful elements such as the

implementation of mesoscopic fluid models as found in the

last two entries.

Finally, we include a ‘‘Free’’ column. A check mark here

indicates that the program is free for academic use (at a

minimum). This column is included to encourage the

interested reader to download and begin experimenting

without any monetary investment.

Namea) Details Free

GROMACS [275] Includes force fields for fully

atomistic

|
www.gromacs.org

Efficient calculation of non-bonded

interaction

CHARMM [276] Includes force fields for fully

atomisticwww.charmm.org

Pioneer for MD simulations

NAMD [277] Includes force fields for fully

atomistic

|
www.ks.uiuc.edu/

Research/namd/ Capable of steered and interactive

MD

AMBER [278] Includes force fields for fully

atomisticamber.scripps.edu

AMBER force field is compatible

with and used in many of these

MD packages

DL_Poly [279] Compatible with GROMACS or

AMBER force fields

|
www.ccp5.ac.uk/

DL_POLY/ Includes potentials for non-biologi-

cal materials

LAMMPS [280] Compatible with CHARMM,

AMBER, and GROMACS

|
lammps.sandia.gov

force fields.

Includes DPD

ESPResSo [281] Designed for coarse-grained |
www.espresso.mpg.de Includes many algorithms for

electrostatics

Includes LB, DPD

a) Parallelized versions of all these packages exist to take

advantage of high performance computing clusters.
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