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Mean-field conductivity in a certain class of networks
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We consider resistor networks, which are lattices with bonds represented by conductors and some of the
bonds removed. It is known that effective medium theories predict that the effective conductivity of such
networks is a linear function of the number of bonds present above the percolation threshold, but exact results
for completely random networks deviate from linearity. We show that if instead we take a randomly chosen tree
spanning the lattice and then start adding bonds to it at random, the conductivity changes linearly with the
number of added bonds and coincides with the effective medium result for a given bond concentration. We also
make comparisons with some related models.
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[. INTRODUCTION the same as in the MF[#] (although the details of the de-
. . . . . pendence may be differenAlso, mean-field or mean-field-
Percolation has been widely studied as a relatively simplgxe pehavior is seen in systems with long-range correlations,
model of phase transitions and critical phgnomena having,,ch as spin systems, in which all pairs of spins interact
many of the featyres of these phenomenalln more compleéqua”y, irespective of how far apart they 88, or systems
systemg1]. The simplest percolation model is random bond-5, rather “pathological’ Bethe latticef5]. In these ex-
diIL!ted percolation, in which case one starts with a regularammes, switching to mean-field behavior requires drastic
lattice and then removes bonds, choosing them completely ghanges, such as going to higher dimensionality or introduc-
random. The diluted networks are characterized by the fraGng rather unphysical long-range interactions. In the present
tion of bonds presertbond concentrationp. In the limit of  yaner we show that even fairly weak geometric correlations

an infinite lattice(thermodynamic limjt for p above the per- ¢4 |ead to mean-field behavior for the conductivity in ran-
colation thresholdy, an infinite percolating clustda set of  4om media.

mutually connected bongsmerges, while belowp, only
finite clusters exist.
A diluted network can be made into a random resistor IIl. THE MODEL
network, if the bonds present are replaced with resistors all ~, <qar the following model of a correlated network.
having the same resistance. Then one can apply a potentig).«; introduce the concept of spanning treg which is a
difference across the network and find the current, thus Me3arwork that has no loopée., there is never more than one
suring the electrical conductance of the network. One Carbath connecting any two si’t)asand in which all sites are
also intr.oduce the eﬁective conductivi_ty as the conductivityconnected_ In other words, in a spanning tree exactly one
of a unlform material of the same size and shape as th ath connects any pair of sites. Suppose we have a set of all
r?e“’Vork having the same ppnductance. Below the 'perC.OI possible spanning trees on a given lattice and choose one of
tion threshold, the conductivity is zero, as the opposite side em at random. Such a tree is called a uniform spanning tree
are not connected; gsgrows and the threshold is crossed, (g reflecting the fact that it is chosen with a probability
the conductivity starts growing from zero. A mean-fiéf it among all trees. It is clear that such a tree is a
effective medium theory (MFT) exists for conductivity2l,  \eyork with long-range correlations, as whether or not a
which pregjicts that this groth oceurs Iir)ear'ly asa 1Eunc'[ioncertain bond closes a loop can depénd on the presence of
Of p=pg, with p.=2/z, wherezis the coordination number of - e honds infinitely far away from it. The conductivities of
the undiluted lattice. This works well far away from; in yees are zero in the thermodynamic limit, as with no loops
fact, the predicted slope is always 99”9(:*)%1 [3]: . there are very few connections between opposite boundaries.
Close top, howgver, the_c_onductmty dependen_ce IS 98N fact, conductivity can be zero even for finite samples, in
erally npnlmgar, with the cr|t|cal e>l(poner.1t depending on thethe case operiodic boundary condition§PBCg. PBCs are
dimensionalityle.g.,=1.30 in two dimension&2D) [1]], but  jr4yced by considering opposite sites at opposite bound-
independent of the lattice type.g., square, triangular, e1C., 4es of the lattice as identicéthus effectively wrapping the
n ZD).' T_here are very f‘?W cases where the MFT for.somqattice into a “torus” of appropriate dimensionalitywhen
quantity s an exact solutlc_)n. Above the upper critical dlmen'building a spanning tree, but then requiring that the potential
sion for a given universality class, the critical exponents argitfers by a specified constant at opposite sites in one direc-
tion and is identical in other directiondor a 2D lattice,
imagine an ordinary torus in 3D with a variable magnetic
*Electronic address: mykyta.chubynsky@umontreal.ca flux through it with a constant rate of chang&hen for
"Electronic address: mft@asu.edu conductance one needs the presence of loops around the
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FIG. 1. A tree built on the 28 20 square lattice with a source 0.5 0.55 0.6
(s) and a sink(s’) added. The missing bonds are shown with thin Bond concentration p
lines, the present bondforming the treg¢with thicker lines, includ-
ing the only path froms to s’ shown with the thickest lines. The
missing bonds are then added at random, as described in the text. 0.3 T T
(b)

“torus” in the direction of potential change; but there are no ©
loops whatsoever in a tree, and thus the conductance is in- > 02
deed zero even in finite samples. This geometry is conve- g
nient for numerical simulations, as described below. A differ- S
ent setup, the source-sink geometry, is more convenient for 2 01k
theoretical analysis that we present later in this paper. In this 8 7
case, we have open boundary conditions, but put two addi-
tional sites, asourceand asink, at the opposite boundaries ..-'
(Fig. 1), allow connections between these sites and the adja- o™ 03" 04 05

cent boundary, and measure the conductance between the
source and the sink; in this case there is just one connection
and the conductivity is again zero in the thermodynamic
limit.

Our model consists in starting from a UST and adding
tbhoer;/dS;{rechr?]?;?r?gth$lr:epIggﬁzsatpggg&m r:;?gggn’ihazi Vrv:Sei & _realizations on the 500500_Iatt_ice and on the simple _cubic

’ L Sr;attlce (b) averaged over 25 realizations on thexX6B0x 50 lattice.

tanc_es_. As bonds are added, the Cond_uc_:tIVIty starts to gro he solid lines are the respective effective medium linear results. In
and it is the dependence of the conductivity on the number o} .4ces,=1 atp=1. For AUST results, a different starting span-
plgced bondgor on th_e bond _concentrathm) thqt_we are ning tree generated at random was used for each realization.
going to study. We will call this model the addition to the
UST (AUST) model in what follows.

Consider a tree spanning a latticeMfites. When a tree
is being built, every new bond must connect two clusters

Bond concentration p

FIG. 2. Conductivityo as a function of bond concentratiprfor
random bond-diluted networkilled circles and our correlated
UST model(open circleg on the square latticea) averaged over

method[7]. We preferred this to somewhat faster special

methods, such as those using the star-triangle transformation

joining them together into one clusténew bonds cannot (8], as we C.OU|d. treat periodic boundary condmons_. As we
dnennoned, in this case the conductance of a tree is exactly

join sites already in the same cluster, or else they woul zero even for a finite sample, so the finite size effects are
close a loop; thus each bond decreases the number of clus= Pie,

ters by 1, and given that there aKeclusters in an empty expected to be less severe; of course, we expect that in the
network With no bonds and just one cluster in the spannin hermodynamlc I|m|F the re_sults do not depend on the bouna-
tree, the number of bonds N-1. This corresponds to the ry conditions and in particular, are the same for PBCs and
bona concentratiop=2/z (as a reminder is the coordina- in the source-sink geometry. The starting uniform trees are

tion number of the full lattice If we make an assumption blu'lt .Ltﬁ'ng an alégorlthm”c(jue t?h Brodt@].kln_ th? Et:rc()jde:

(that will actually follow from the proof belowthat the con- algorithm, a random walk on né Network IS i "’?re_ at an
ductivity starts growing from zero immediately as the bondsa_lrbl'[rary site and_ continued until all sites are V|S|ted,_every
start to be added to the tree, the valpe2/z should be time a new site is reached, the last bond along which the

regarded as the analog of the percolation threshold. We no alk reached that site is recorded; the set of all such bonds
that it coincides with the mean-field val(i2] ' %here areN-1 of them, since one bond is recorded for each

site but the starting ondorms a tree and it can be provgd]

that every possible tree will occur with equal probability. In

Fig. 2 we compare the results for the usual randomly diluted

lattices with those for our AUST model. In Fig(&, we
First, the study of conductivity in our AUST model can be present the results for the square lattice. In this case, the

done numerically. We did this by solving the system ofcomparison is facilitated by the percolating thresholds being

Kirchhoff equations directly by the conjugate gradientthe same in the two models; indeed, for the randomly diluted

III. NUMERICAL RESULTS
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square lattice, the threshold is known to occur at the mean- ] M= O TH
field value(p,=0.5 in this casg as we mentioned, this is the a)
case for the AUST model, regardless of the lattice. In Fig. — —
2(b), we do the same comparison for the simple cubic lattice.
In this case the thresholds do not coincide: the mean-field 11 T
(and AUST value is 1/3, the randomly diluted network -
value is 0.24881]. l
The striking feature of the results in Fig. 2 is that while in ]
the random dilution case the deviation from linearity is seen 1 }
very well close to the percolation threshold, the dependence | [ 11
for the AUST model seems to be linear. Note that this is the ‘L [T 1_1_
-y

e
]

.

case in both 20Fig. 2@)] and 3D[Fig. 2b)]. Of course, the [1 L1
question is if this dependence is indeed exactly linear or just
very close to linear, and we are going to show now that this || LI |
linearity is exact (b) =

IV. PROOF OF LINEARITY OF CONDUCTIVITY |

We will use a result due to Kirchhoff10,11] that ex- S = S
presses the resistance between two points of a resistor net-
work in terms of sums over trees built on the network. In our
particular case, when all resistances are equal to unity, this
result reduces to a tree-counting procedure. First, find the
total numberN; of distinct spanning trees that can be built
on the networKFig. 3(b)]. Second, find the total numbi

of possible distinct graphs consisting of two trees, such that | : | r" P
the source is in one tree and the sink in the ofltég. 3(c)]. (C) - A \
Following Bollobas[12], we will refer to such two-tree
graphs aghickets Then the conductanc8 is the ratio of EEguR ,
these two numbers: TTC
S= ﬁ. 1) S - .
NT' [ | ]:L— 4
This result is based on the following fact. Suppose there is a | ’_'a h - | ;
spanning tree on the network and one drives a unit current ‘D T
between the source and the sinks’ (the current will, of o e

course, be confined to the “backbone” of the tree, which is FIG. 3. (Colon An illustration of the relation between networks,

]u_St asingle path, as 'HUStr,ated in Fig. Now, if one repeats trees, and thicketqa) shows a network spanning all sites of the
this for all possible spanning trees and forms the superposksqare attice(such as would be obtained by adding bonds to a
thn of_the curr_ents, then the resultm_g _current d'St“b_Ut'Onspanning trek (b) illustrates a tregred) built on the network in(a),
will satisfy all Kirchhoff laws for the original network with o, conversely, the network i) can be obtained by adding bonds
no other sources and sinks bsitand s’. That the sum of o the tree inb). Finally, (c) shows a thicket consisting of two trees
currents at each node is zero is obvious, since this is so fqblue and greenon the network in(a). Note that the particular
each separate tree and thus also holds for the superpositiafiicket in(c) can be obtained by removing a single bdret! in(c)]
checking that the voltage drop around any loop is zero is @&om the backbone of the tree ().

bit trickier, but can be done by expressing the current in each

loop in terms of certain thickets and then looking at thegiqer 4 set of all networks that can be obtained from these
contribution of each thickeffor details, see Ref12]). Once  {rgeg by adding exactlg bonds(the middle column of dots
this fact is established, one can consider a network consisting Fig. 4). From each tree we can obtain

of the original one plus an additional link of unit resistance

betweens ands’; the conductance of the original network is Bo

then the ratio of the current through the original network and N,= B (2)
the current through the added lirithe latter being equal to

the voltage betweea ands’). different networks, wherd, is the total number of bonds

For our proof, it is convenient to visualize the following missing in the tree compared to the full latticete thaB, is
diagram(Fig. 4). First, imagine we have a set of all spanning the same for all trees, as the number of bonds in any tree is
trees that can be built on the full lattice. This set is denotedN—1). This establishes connections between the set of trees
schematically as the left column of dots in Fig. 4. Now con-and the set of networks, so that every tree is connectéd to
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trees networks thickets C'=N/T;, (5)
whereT; is the total number of possible thickets on the full
Y lattice. These connections are also shown in the diagram.
N \4 Again, they also specify which thickets can be built on each
. e network.

A plausible assumption that we make is that conductance
is self-averaging, i.e., in the thermodynamic limit the con-
ductance is the same for all but a negligible fraction of real-
izations. We verified this assumption numerically, by check-
ing that the variance in the conductance for different
realizations at the same bond concentration decreases as the

-

N\

L~

NS A
.KK; \()/>

> network size increases. Then for almost every network the
ratio of the number of trees connected to it to the number of
& thickets connected to it is the sarfes this ratio equals the

conductivity, according to Ed1)]. The anomalous networks,
for which this is not the case, have a negligible probability of

'\ E
occurring. The probability to obtain a particular network is

FIG. 4. A schematic diagram showing relations between treea

d networks and between thickets and networks. The left Col roportional to the number of connections between this net-
of dots denotes the set of all possible trees on the ful latice; the/'< a0 Various trees; thus anomalous networks have a
. X P i ; . ' hegligible amount of connections with the trees; this is also
right column is the set of all thickets; the middle column is the set, . . . . .

true for their connections with the thickets, as the ratio of the

of all spanning networks with a certain number of bonds. The con- . . . .
nectionps in thge left partbetween trees and netwojkshow what number of connections with the trees to that with the thickets

networks can be built by adding bonds to a tree, or, conversel;f,Or every network is its conductance, and the conductivity is
what trees are subgraphs of a given network. The connections in tHeXPected to b&(1) for all but an exponentially small frac-
right part show similar relations between thickets and networks!ion of networks. Then all connections of the anomalous net-
The ratio of the numbers of connections in the left part and in theVOrks can be neglected in the total count of connections and
right part is proportional to the conductivity of a network with a the ratio of the total number of connections between the left
certain number of bonds in the thermodynamic limit, as discusse@nd the middle columns to that between the right and the
in the text. middle columns is again the conductance. On the other hand,
this ratio is

networks that can be obtained from it. These connections are N.T T(B+1)
shown schematically in Fig. 4 as the links between the dots S=C/IC' = f‘ f ==
in the left column and the dots in the middle column. The NaTi  Ti(Bo+1)

total number of connections is as By, Ty, and T; do not depend orB, and the proof is
complete.
C=N,T;, (3) Some comments are in order. First, we have not made any
assumptions about the underlying lattice, so that the result is
. . , independent of the lattice type and dimensionality, although
where Ty is the total number of possible spanning trees Ofy,ere may be problems with the assumptions that we made in

the full lattice. Conversely, these same connections specifyiagical cases, when connections between sites infinitely
which trees can be built on each netwdile., are subgraphs  ¢a anart are possible. Second, we had in mind a situation

of th_e ﬂetWOfk- . . . with the source and the sink at the opposite sides of the
Similarly, we can consider the set of all possible thicketsiyyice byt have not used this fact anywhere. We did make an
on the full lattice (denoted by the right column of dots  as5mption that conductance is realization independent and

Every thicket hasN-2 bonds, so there arBy+1 empty g is only true when the source and the sink are infinitel
bonds. If we add a set d+1 bonds to a thicket, we will ¢, apart. Y ’

almost certainly obtain one of the networks under consider-
ation (there is a possibility that none of these bonds connect
the two trees of the thicket together, but this is negligibly V. RELATED MODELS
rare in the thermodynamic limit Then the number of net- Besides UST, it is possible to produce varidiiaseddis-
works that can be obtained from each thicket by bond inseryihytions of spanning trees. One much-studied example is
tionis the minimal spanning treéMST) [13], which is, given a
lattice with weights assigned to bonds, the tree with minimal
By+1 total weight. Another example of a spanning tree is the
n= ( ) (4)  shortest-path tre€SPT) [13], which, again given the weights
B+1 ; . i :
of bonds, is the set of paths with minimum weight between a
particular site and all other sites. Note that our proof does not
and the total number of connections is apply to these biased cases, as atypical networks with

«B forB>1, (6)

n
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anomalous conductivity may be strongly favored over typical 1
ones. Indeed, the trees themselves are atypical: the geom-
etries of the MST and SPT are different from those of the
typical UST; this can be characterized, e.g., by the fractal
dimension of paths on the trees, which in 2D is 5/4 for UST
[14], =1.22 for MST[15], and 1 for SPT for moderate dis-
order in weights[16]. Thus branches of a SPT are much
more straight than those of a UST. Interestingly, though, it
turns out that the conductivity dependence is still surpris-
ingly close to linear even for the SPT, despite their being
geometrically very different from the UST. For example, for o . .

the square lattice, gh=0.55 the conductivity of networks 0.5 0.75 1

obtained from the SPT is only about 3% above that of net- Bond concentration p

works obtained from the UST. We also note that for the

MST, the deviations from linearity have never been reliably FIG. 5. Conductivity as a function of bond concentration for the
detected either in 2D or in 3D. Thus it may be possible thatestricted dilution model described in the tegircles. These re-
the linearity is exact for the MST, just as for the UST. Thesults are averaged over 25 realizations on the>000 square
reasons for this linearity or near-linearity in the MST andlattice. The solid line is the mean-field linear result.

SPT are not clear at the moment.

At the same time it is easy to produce spanning networkszero, so the conductivity of the corresponding networks ob-
for which their conductivity dependence is strongly nonlin-tained by restricted dilution is also zero, even though by
ear. Trivial examples can be obtained by adding bonds t@onstruction these networks still span all sites.
anisotropic trees, in which most branches are directed, say,
perpendicular to the applied potential difference. More inter- VI. OUTLOOK
esting is the followingisotropic case(called the restricted
dilution model in what follows Start from the full lattice

0.5

Conductivity o

While this paper provides a formal proof of linearity of
and start picking bonds at random, but removing them only nconduqtlwty in the AU.ST model, an obymus question s if
ntpere is a more straightforward physical explanation. Of

this removal does not separate a piece of the network fro . . .
the rest. In this way, we obtain spanning networks, with nocourse, the network is more uniform in a sense compared to

finite clusters, just as in our AUST model. Obviously, this a randomly diluted one, as the _pe_rc_olating cluster spans all
dilution procedure can be continued until a spanning tree i ltes and there are no “holes” in it in the fO”T? of |so_|atgd

obtained. Despite certain similarity with the AUST model, inite clusters. Ye_t, as _the example of the restricted dilution
the conductivity dependence now is not mean-field-like. In-mOdeI shows, this by itself is not enough to get even close

deed, it can be shown that the conductivity becomes zer nough to linearity. There Seems to be ”O‘hif‘g in the m.odel
beforereaching the spanning tree limit, i.e., at a higher bond'S€!f that would suggest that it should exhibit mean-field

- : : ; havior, so the question remains open at present.
concentration(Fig. 5). Thus, an interesting example of an € ’ .
intermediate phasés formed: in a certain range of bond As a final note, a model analogous to the AUST, but using

concentrations, the infinite cluster exists, but its structure i STs as initial trees to which bonds are added, has arisen as

such that the conductance is very low and vanishes in th € 90”’?90“?"“( 'a'nalog of our mode[l?] Of. self-
thermodynamic limit. organization inrigidity percolation as explained in Ref.

To see this, suppose we create a random list of bondL.18]' In that case, the analog O.f conductivity is_th_e elastic
intended for removal. In the case of random bond dilution,mOdUII of the network of elastic springs, and it is worth

all of these bonds are removed in the order given by the Iist'.mting thgt the deviations from linearity _in the cri_tical region
In the restricted dilution case, some of these bonds will bé¥€ S|gn|.f|cant[1.9], W.hefe‘?‘s the effective med|um thgory
rejected and not removed. Note that rejected bonds do n ?0] again pr_edlcts Ilnearl_ty_. Thus me_an-ﬂeld behavior is
belong to loops and so their removal would not change th&!nique to ordinaryconnectivity percolation.

_configuration of _Ioops and thus would not chang_e conductiv- ACKNOWLEDGMENTS

ity (at least not in the case of PBC3hen, there is a corre-
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dom dilution and those obtained by restricted dilution usingScience Foundation under Grants No. DMR-0078361 and
the same list of bonds whose removal is attempted. If thiNo. DMR-0427933 and from the Center for Fundamental
random dilution procedure proceeds below the percolatioMaterials Research at Michigan State University. We are also
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